scispace - formally typeset
Search or ask a question
Institution

Tokyo University of Science

EducationTokyo, Japan
About: Tokyo University of Science is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 15800 authors who have published 24147 publications receiving 438081 citations. The organization is also known as: Tōkyō Rika Daigaku & Science University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, LiCrO2 and NaCrO 2, possessing the same polytypism and the same transition metal atom, were investigated at room temperature in aprotic organic electrolyte solutions.

509 citations

Journal ArticleDOI
TL;DR: Lac-conjugated gold nanoparticles exhibited selective aggregation when exposed to Recinus communis agglutinin (RCA120), a bivalent lectin specifically recognizing the β-d-galactose residue, inducing significant changes in the absorption spectrum with concomitant visible color change from pinkish-red to purple.
Abstract: Gold nanoparticles (1−10 nm size range) were prepared with an appreciably narrow size distribution by in situ reduction of HAuCl4 in the presence of heterobifunctional poly(ethylene glycol) (PEG) derivatives containing both mercapto and acetal groups (α-acetal-ω-mercapto-PEG). The α-acetal-PEG layers formed on gold nanoparticles impart appreciable stability to the nanoparticles in aqueous solutions with elevated ionic strength and also in serum-containing medium. The PEG acetal terminal group was converted to aldehyde by gentle acid treatment, followed by the reaction with p-aminophenyl-β-d- lactopyranoside (Lac) in the presence of (CH3)2NHBH3. Lac-conjugated gold nanoparticles exhibited selective aggregation when exposed to Recinus communis agglutinin (RCA120), a bivalent lectin specifically recognizing the β-d-galactose residue, inducing significant changes in the absorption spectrum with concomitant visible color change from pinkish-red to purple. Aggregation of the Lac-functionalized gold nanoparticle...

501 citations

Journal ArticleDOI
TL;DR: An uphill reaction of CO(2) reduction accompanied with water oxidation was achieved using the Ag/BaLa( 4)Ti(4)O(15) photocatalyst, indicating that water was consumed as a reducing reagent for the CO( 2) reduction.
Abstract: Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) photocatalysts with 3.79–3.85 eV of band gaps and layered perovskite structures showed activities for CO2 reduction to form CO and HCOOH by bubbling CO2 gas into the aqueous suspension of the photocatalyst powder without any sacrificial reagents. Ag cocatalyst-loaded BaLa4Ti4O15 was the most active photocatalyst. A liquid-phase chemical reduction method was better than impregnation and in situ photodeposition methods for the loading of the Ag cocatalyst. The Ag cocatalyst prepared by the liquid-phase chemical reduction method was loaded as fine particles with the size smaller than 10 nm on the edge of the BaLa4Ti4O15 photocatalyst powder with a plate shape during the CO2 reduction. CO was the main reduction product rather than H2 even in an aqueous medium on the optimized Ag/BaLa4Ti4O15 photocatalyst. Evolution of O2 in a stoichiometric ratio (H2+CO:O2 = 2:1 in a molar ratio) indicated that water was consumed as a reducing reagent (an electron donor) fo...

501 citations

Journal ArticleDOI
TL;DR: The conformal deposition of an ultrathin p-type NiO layer on the photoanode is shown to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending.
Abstract: Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoO(x) and NiOOH for the improved water oxidation activity. Compared to the CoO(x) loaded BiVO4 (CoO(x)/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoO(x)/BiVO4 photoanode triples the photocurrent density at 0.6 V(RHE) under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen efficiency. Stoichiometric oxygen and hydrogen are generated with Faraday efficiency of unity over 12 h. This strategy could be applied to other narrow band gap semiconducting photoanodes toward the low-cost solar fuel generation devices.

495 citations

Journal ArticleDOI
TL;DR: The profile of the thermal melting curve revealed a higher stabilization of DNA structure in PEG-PLL/DNA complexes compared to that in the complex made from DNA and PLL homopolymer with the same molecular weight, suggesting DNA protection through the segregation into the core of the associate having PEG palisade.

481 citations


Authors

Showing all 15878 results

NameH-indexPapersCitations
Kazunori Kataoka13890870412
Yoichiro Iwakura12970564041
Kouji Matsushima12459056995
Masaki Ishitsuka10362439383
Shinsuke Tanabe9872237445
Tatsumi Koi9741150222
Hirofumi Akagi9461843179
Clifford A. Lowell9125823538
Teruo Okano9160528346
László Á. Gergely8942660674
T. Sumiyoshi8885562277
Toshinori Nakayama8640525275
Akihiko Kudo8632839475
Hans-Joachim Gabius8569928085
Motohide Tamura85100732725
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Osaka University
185.6K papers, 5.1M citations

95% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
2022137
20211,357
20201,481
20191,510
20181,429