scispace - formally typeset
Search or ask a question
Institution

University of New Mexico

EducationAlbuquerque, New Mexico, United States
About: University of New Mexico is a education organization based out in Albuquerque, New Mexico, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 28870 authors who have published 64767 publications receiving 2578371 citations. The organization is also known as: UNM & Universitatis Novus Mexico.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent efforts to develop MSNPs as biocompatible nanocarriers that simultaneously display multiple functions including high visibility/contrast in multiple imaging modalities, dispersibility, binding specificity to a particular target tissue or cell type, ability to load and deliver large concentrations of diverse cargos, and triggered or controlled release of cargo.
Abstract: The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. The exceptionally high surface area of MSNPs, often exceeding 1000 m²/g, and the ability to independently modify pore size and surface chemistry, enables the loading of diverse cargos and cargo combinations at levels exceeding those of other common drug delivery carriers such as liposomes or polymer conjugates. This is because noncovalent electrostatic, hydrogen-bonding, and van der Waals interactions of the cargo with the MSNP internal surface cause preferential adsorption of cargo to the MSNP, allowing loading capacities to surpass the solubility limit of a solution or that achievable by osmotic gradient loading. The ability to independently modify the MSNP surface and interior makes possible engineered biofunctionality and biocompatibility. In this Account, we detail our recent efforts to develop MSNPs as biocompatible nanocarriers (Figure 1 ) that simultaneously display multiple functions including (1) high visibility/contrast in multiple imaging modalities, (2) dispersibility, (3) binding specificity to a particular target tissue or cell type, (4) ability to load and deliver large concentrations of diverse cargos, and (5) triggered or controlled release of cargo. Toward function 1, we chemically conjugated fluorescent dyes or incorporated magnetic nanoparticles to enable in vivo optical or magnetic resonance imaging. For function 2, we have made MSNPs with polymer coatings, charged groups, or supported lipid bilayers, which decrease aggregation and improve stability in saline solutions. For functions 3 and 4, we have enhanced passive bioaccumulation via the enhanced permeability and retention effect by modifying the MSNP surfaces with positively charged polymers. We have also chemically attached ligands to MSNPs that selectively bind to receptors overexpressed in cancer cells. We have used encapsulation of MSNPs within reconfigurable supported lipid bilayers to develop new classes of responsive nanocarriers that actively interact with the target cell. Toward function 4, we exploit the high surface area and tailorable surface chemistry of MSNPs to retain hydrophobic drugs. Finally, for function 5, we have engineered dynamic behaviors by incorporating molecular machines within or at the entrances of MSNP pores and by using ligands, polymers, or lipid bilayers. These provide a means to seal-in and retain cargo and to direct MSNP interactions with and internalization by target cells. Application of MSNPs as nanocarriers requires biocompatibility and low toxicity. Here the intrinsic porosity of the MSNP surface reduces the extent of hydrogen bonding or electrostatic interactions with cell membranes as does surface coating with polymers or lipid bilayers. Furthermore, the high surface area and low extent of condensation of the MSNP siloxane framework promote a high rate of dissolution into soluble silicic acid species, which are found to be nontoxic. Potential toxicity is further mitigated by the high drug capacity of MSNPs, which greatly reduces needed dosages compared with other nanocarriers. We anticipate that future generations of MSNPs incorporating molecular machines and encapsulated by membrane-like lipid bilayers will achieve a new level of controlled cellular interactions.

786 citations

Journal ArticleDOI
30 Aug 2002-Science
TL;DR: In this paper, the authors show that the average energy flux of populations is temperature invariant and derive a model that quantitatively predicts how species diversity increases with environmental temperature, supported by data for terrestrial, freshwater, and marine taxa along latitudinal and elevational gradients.
Abstract: The latitudinal gradient of increasing biodiversity from poles to equator is one of the most prominent but least understood features of life on Earth. Here we show that species diversity can be predicted from the biochemical kinetics of metabolism. We first demonstrate that the average energy flux of populations is temperature invariant. We then derive a model that quantitatively predicts how species diversity increases with environmental temperature. Predictions are supported by data for terrestrial, freshwater, and marine taxa along latitudinal and elevational gradients. These results establish a thermodynamic basis for the regulation of species diversity and the organization of ecological communities.

785 citations

Journal ArticleDOI
TL;DR: In this article, an extension to solid mechanics of the FLIP particle-in-cell method is presented, which uses two representations of the continuum, one based on a collection of material points and the other based on computational grid.

781 citations

Journal ArticleDOI
J. Abraham1, Marco Aglietta, I. C. Aguirre, Michael Albrow2  +353 moreInstitutions (43)
01 May 2004
TL;DR: The first phase of the Pierre Auger Observatory has been completed and all of the sub-systems that will be used in the full instrument to be tested under field conditions as discussed by the authors.
Abstract: Construction of the first stage of the Pierre Auger Observatory has begun. The aim of the Observatory is to collect unprecedented information about cosmic rays above 1018 eV. The first phase of the project, the construction and operation of a prototype system, known as the engineering array, has now been completed. It has allowed all of the sub-systems that will be used in the full instrument to be tested under field conditions. In this paper, the properties and performance of these sub-systems are described and their success illustrated with descriptions of some of the events recorded thus far. © 2003 Elsevier B.V. All rights reserved.

775 citations

Journal ArticleDOI
TL;DR: PGE inhibits PHA- and Con A-stimulated cultures much better than PWM cultures, suggesting a differential effect of PGE on T-cell vs. B-cell function.
Abstract: Small amounts of PGE inhibit mitogen-induced [3H]thymidine incorporation in human peripheral lymphocytes. The 50% inhibitory concentration is approximately 10(-7) M, and this is reduced to approximately 10(-8) M when endogenous PGE production is blocked. PGE inhibits PHA- and Con A-stimulated cultures much better than PWM cultures, suggesting a differential effect of PGE on T-cell vs. B-cell function. In vitro blockade of PG synthesis results in approximately 50% increase in [3H]thymidine incorporation in PHA cultures. PGE is produced endogenously in PHA cultures by glass adherent suppressor cells.

773 citations


Authors

Showing all 29120 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Miller2032573204840
Jing Wang1844046202769
Paul M. Thompson1832271146736
David A. Weitz1781038114182
David R. Williams1782034138789
John A. Rogers1771341127390
George F. Koob171935112521
John D. Minna169951106363
Carlos Bustamante161770106053
Lewis L. Lanier15955486677
Joseph Wang158128298799
John E. Morley154137797021
Fabian Walter14699983016
Michael F. Holick145767107937
Network Information
Related Institutions (5)
University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Minnesota
257.9K papers, 11.9M citations

96% related

University of Washington
305.5K papers, 17.7M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202390
2022595
20213,060
20203,049
20192,779
20182,729