scispace - formally typeset
Search or ask a question
Institution

University of Western Australia

EducationPerth, Western Australia, Australia
About: University of Western Australia is a education organization based out in Perth, Western Australia, Australia. It is known for research contribution in the topics: Population & Poison control. The organization has 29613 authors who have published 87405 publications receiving 3064466 citations. The organization is also known as: UWA & University of WA.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a baryon acoustic oscillation (BAO) signal at 105h −1 Mpc was analyzed.
Abstract: We analyse the large-scale correlation function of the 6dF Galaxy Survey (6dFGS) and detect a baryon acoustic oscillation (BAO) signal at 105h −1 Mpc. The 6dFGS BAO detection allows us to constrain the distance–redshift relation at zeff = 0.106. We achieve a distance measure of DV (zeff) = 457 ± 27 Mpc and a measurement of the distance ratio, rs(zd)/DV (zeff) = 0.336 ± 0.015 (4.5 per cent precision), where rs(zd) is the sound horizon at the drag epoch zd .T he loweffective redshift of 6dFGS makes it a competitive and independent alternative to Cepheids and low-z supernovae in constraining the Hubble constant. We find a Hubble constant of H0 = 67 ± 3.2 km s −1 Mpc −1 (4.8 per cent precision) that depends only on theWilkinson Microwave Anisotropy Probe-7 (WMAP-7) calibration of the sound horizon and on the galaxy clustering in 6dFGS. Compared to earlier BAO studies at higher redshift, our analysis is less dependent on other cosmological parameters. The sensitivity to H0 can be used to break the degeneracy between the dark energy equation of state parameter w and H0 in the cosmic microwave background data. We determine that w =− 0.97 ± 0.13, using only WMAP-7 and BAO data from both 6dFGS and Percival et al. (2010). We also discuss predictions for the large-scale correlation function of two future wide-angle surveys: the Wide field ASKAP L-band Legacy All-sky Blind surveY (WALLABY) blind H I survey (with the Australian Square Kilometre Array Pathfinder, ASKAP) and the proposed Transforming Astronomical Imaging surveys through Polychromatic Analysis of Nebulae (TAIPAN) all-southern-sky optical galaxy survey with the UK Schmidt Telescope. We find that both surveys are very likely to yield detections of the BAO peak, making WALLABY the first radio galaxy survey to do so. We also predict that TAIPAN has the potential to constrain the Hubble constant with 3 per cent precision.

2,435 citations

Journal ArticleDOI
TL;DR: Enhancements to the properties based on Hirshfeld surfaces enable quantitative comparisons between contributions to crystal packing from various types of intermolecular contacts.

2,410 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current state of knowledge and technology of hydrogen production by water electrolysis and identifies areas where R&D effort is needed in order to improve this technology.

2,396 citations

Journal ArticleDOI
Christina Fitzmaurice1, Christina Fitzmaurice2, Daniel Dicker2, Daniel Dicker1, Amanda W Pain1, Hannah Hamavid1, Maziar Moradi-Lakeh1, Michael F. MacIntyre1, Michael F. MacIntyre3, Christine Allen1, Gillian M. Hansen1, Rachel Woodbrook1, Charles D.A. Wolfe1, Randah R. Hamadeh4, Ami R. Moore5, A. Werdecker6, Bradford D. Gessner, Braden Te Ao, Brian J. McMahon7, Chante Karimkhani8, Chuanhua Yu9, Graham S Cooke10, David C. Schwebel11, David O. Carpenter12, David M. Pereira13, Denis Nash, Dhruv S. Kazi14, Diego De Leo15, Dietrich Plass16, Kingsley N. Ukwaja17, George D. Thurston, Kim Yun Jin18, Edgar P. Simard19, Edward J Mills20, Eun-Kee Park21, Ferrán Catalá-López22, Gabrielle deVeber, Carolyn C. Gotay23, Gulfaraz Khan24, H. Dean Hosgood25, Itamar S. Santos26, Janet L Leasher27, Jasvinder A. Singh28, James Leigh12, Jost B. Jonas29, Juan R. Sanabria30, Justin Beardsley31, Justin Beardsley32, Kathryn H. Jacobsen33, Ken Takahashi34, Richard C. Franklin, Luca Ronfani35, Marcella Montico36, Luigi Naldi36, Marcello Tonelli, Johanna M. Geleijnse37, Max Petzold38, Mark G. Shrime39, Mark G. Shrime40, Mustafa Z. Younis41, Naohiro Yonemoto42, Nicholas J K Breitborde, Paul S. F. Yip43, Farshad Pourmalek44, Paulo A. Lotufo24, Alireza Esteghamati27, Graeme J. Hankey45, Raghib Ali46, Raimundas Lunevicius33, Reza Malekzadeh47, Robert P. Dellavalle45, Robert G. Weintraub48, Robert G. Weintraub49, Robyn M. Lucas50, Robyn M. Lucas51, Roderick J Hay52, David Rojas-Rueda, Ronny Westerman, Sadaf G. Sepanlou53, Sandra Nolte, Scott B. Patten54, Scott Weichenthal37, Semaw Ferede Abera55, Seyed-Mohammad Fereshtehnejad56, Ivy Shiue57, Tim Driscoll58, Tim Driscoll59, Tommi J. Vasankari29, Ubai Alsharif, Vafa Rahimi-Movaghar54, Vasiliy Victorovich Vlassov45, W. S. Marcenes60, Wubegzier Mekonnen61, Yohannes Adama Melaku62, Yuichiro Yano56, Al Artaman63, Ismael Campos, Jennifer H MacLachlan41, Ulrich O Mueller, Daniel Kim53, Matias Trillini64, Babak Eshrati65, Hywel C Williams66, Kenji Shibuya67, Rakhi Dandona68, Kinnari S. Murthy69, Benjamin C Cowie69, Azmeraw T. Amare, Carl Abelardo T. Antonio70, Carlos A Castañeda-Orjuela71, Coen H. Van Gool, Francesco Saverio Violante, In-Hwan Oh72, Kedede Deribe73, Kjetil Søreide74, Kjetil Søreide62, Luke D. Knibbs75, Luke D. Knibbs76, Maia Kereselidze77, Mark Green78, Rosario Cardenas79, Nobhojit Roy80, Taavi Tillmann57, Yongmei Li81, Hans Krueger82, Lorenzo Monasta24, Subhojit Dey36, Sara Sheikhbahaei, Nima Hafezi-Nejad45, G Anil Kumar45, Chandrashekhar T Sreeramareddy69, Lalit Dandona83, Haidong Wang69, Haidong Wang1, Stein Emil Vollset1, Ali Mokdad84, Ali Mokdad76, Joshua A. Salomon1, Rafael Lozano41, Theo Vos1, Mohammad H. Forouzanfar1, Alan D. Lopez1, Christopher J L Murray51, Mohsen Naghavi1 
Institute for Health Metrics and Evaluation1, University of Washington2, Iran University of Medical Sciences3, King's College London4, Arabian Gulf University5, University of North Texas6, Auckland University of Technology7, Alaska Native Tribal Health Consortium8, Columbia University9, Wuhan University10, Imperial College London11, University of Alabama at Birmingham12, University at Albany, SUNY13, City University of New York14, University of California, San Francisco15, Griffith University16, Environment Agency17, New York University18, Southern University College19, Emory University20, University of Ottawa21, Kosin University22, University of Toronto23, University of British Columbia24, United Arab Emirates University25, Albert Einstein College of Medicine26, University of São Paulo27, Nova Southeastern University28, University of Sydney29, Heidelberg University30, Cancer Treatment Centers of America31, Case Western Reserve University32, University of Oxford33, George Mason University34, James Cook University35, University of Trieste36, University of Calgary37, Wageningen University and Research Centre38, University of the Witwatersrand39, University of Gothenburg40, Harvard University41, Jackson State University42, University of Arizona43, University of Hong Kong44, Tehran University of Medical Sciences45, University of Western Australia46, Aintree University Hospitals NHS Foundation Trust47, University of Colorado Denver48, Veterans Health Administration49, Royal Children's Hospital50, University of Melbourne51, Australian National University52, University of Marburg53, Charité54, Health Canada55, College of Health Sciences, Bahrain56, Karolinska Institutet57, University of Edinburgh58, Northumbria University59, National Research University – Higher School of Economics60, Queen Mary University of London61, Addis Ababa University62, Northwestern University63, Northeastern University64, Mario Negri Institute for Pharmacological Research65, Arak University of Medical Sciences66, University of Nottingham67, University of Tokyo68, Public Health Foundation of India69, University of Groningen70, University of the Philippines Manila71, University of Bologna72, Kyung Hee University73, Brighton and Sussex Medical School74, Stavanger University Hospital75, University of Bergen76, University of Queensland77, National Centre for Disease Control78, University of Sheffield79, Universidad Autónoma Metropolitana80, University College London81, Genentech82, Universiti Tunku Abdul Rahman83, Norwegian Institute of Public Health84
TL;DR: To estimate mortality, incidence, years lived with disability, years of life lost, and disability-adjusted life-years for 28 cancers in 188 countries by sex from 1990 to 2013, the general methodology of the Global Burden of Disease 2013 study was used.
Abstract: Importance Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies. Objective To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013. Evidence Review The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs. Findings In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries. Conclusions and Relevance Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation.

2,375 citations

Journal ArticleDOI
TL;DR: These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia.
Abstract: It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.

2,359 citations


Authors

Showing all 29972 results

NameH-indexPapersCitations
Nicholas G. Martin1921770161952
Cornelia M. van Duijn1831030146009
Kay-Tee Khaw1741389138782
Steven N. Blair165879132929
David W. Bates1591239116698
Mark E. Cooper1581463124887
David Cameron1541586126067
Stephen T. Holgate14287082345
Jeremy K. Nicholson14177380275
Xin Chen1391008113088
Graeme J. Hankey137844143373
David Stuart1361665103759
Joachim Heinrich136130976887
Carlos M. Duarte132117386672
David Smith1292184100917
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

98% related

University of Melbourne
174.8K papers, 6.3M citations

97% related

University of Sydney
187.3K papers, 6.1M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023138
2022656
20215,967
20205,589
20195,452
20184,923