scispace - formally typeset
Search or ask a question

Showing papers in "Nature Geoscience in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors used a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries.
Abstract: Pesticides are widely used to protect food production and meet global food demand but are also ubiquitous environmental pollutants, causing adverse effects on water quality, biodiversity and human health Here we use a global database of pesticide applications and a spatially explicit environmental model to estimate the world geography of environmental pollution risk caused by 92 active ingredients in 168 countries We considered a region to be at risk of pollution if pesticide residues in the environment exceeded the no-effect concentrations, and to be at high risk if residues exceeded this by three orders of magnitude We find that 64% of global agricultural land (approximately 245 million km2) is at risk of pesticide pollution by more than one active ingredient, and 31% is at high risk Among the high-risk areas, about 34% are in high-biodiversity regions, 5% in water-scarce areas and 19% in low- and lower-middle-income nations We identify watersheds in South Africa, China, India, Australia and Argentina as high-concern regions because they have high pesticide pollution risk, bear high biodiversity and suffer from water scarcity Our study expands earlier pesticide risk assessments as it accounts for multiple active ingredients and integrates risks in different environmental compartments at a global scale Pesticide pollution is a risk for two-thirds of agriculture land A third of high-risk areas are in high-biodiversity regions and a fifth are in low- and lower-middle-income areas, according to environmental modelling combined with pesticide application data

274 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a metadata analysis of methane fluxes from all major natural, impacted and human-made aquatic ecosystems and conclude that aquatic emissions will probably increase due to urbanization, eutrophication and positive climate feedbacks.
Abstract: Atmospheric methane is a potent greenhouse gas that plays a major role in controlling the Earth’s climate The causes of the renewed increase of methane concentration since 2007 are uncertain given the multiple sources and complex biogeochemistry Here, we present a metadata analysis of methane fluxes from all major natural, impacted and human-made aquatic ecosystems Our revised bottom-up global aquatic methane emissions combine diffusive, ebullitive and/or plant-mediated fluxes from 15 aquatic ecosystems We emphasize the high variability of methane fluxes within and between aquatic ecosystems and a positively skewed distribution of empirical data, making global estimates sensitive to statistical assumptions and sampling design We find aquatic ecosystems contribute (median) 41% or (mean) 53% of total global methane emissions from anthropogenic and natural sources We show that methane emissions increase from natural to impacted aquatic ecosystems and from coastal to freshwater ecosystems We argue that aquatic emissions will probably increase due to urbanization, eutrophication and positive climate feedbacks and suggest changes in land-use management as potential mitigation strategies to reduce aquatic methane emissions Methane emissions from aquatic systems contribute approximately half of global methane emissions, according to meta-analysis of natural, impacted and human-made aquatic ecosystems and indicating potential mitigation strategies to reduce emissions

239 citations


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper used a combination of index decomposition analysis and chemical transport modelling to quantify the relative influence of eight different factors on PM2.5-related deaths in China over the 15-year period from 2002 to 2017.
Abstract: Between 2002 and 2017, China’s gross domestic product grew by 284%, but this surge was accompanied by a similarly prodigious growth in energy consumption, air pollution and air pollution-related deaths. Here we use a combination of index decomposition analysis and chemical transport modelling to quantify the relative influence of eight different factors on PM2.5-related deaths in China over the 15-year period from 2002 to 2017. We show that, over this period, PM2.5-related deaths increased by 0.39 million (23%) in China. Emission control technologies mandated by end-of-pipe control policies avoided 0.87 million deaths, which is nearly three-quarters (71%) of the deaths that would have otherwise occurred due to the country’s increased economic activity. In addition, energy-climate policies and changes in economic structure have also became evident recently and together avoided 0.39 million deaths from 2012 to 2017, leading to a decline in total deaths after 2012, despite the increasing vulnerability of China’s ageing population. As advanced end-of-pipe control measures have been widely implemented, such policies may face challenges in avoiding air pollution deaths in the future. Our findings thus suggest that further improvements in air quality must not only depend on stringent end-of-pipe control policies but also be reinforced by energy-climate policies and continuing changes in China’s economic structure. Emission controls avoided some 870,000 deaths in China between 2002 and 2017 but further air quality improvements need energy-climate policies and changed economic structure, according to index decomposition analysis and chemical transport models.

126 citations


Journal ArticleDOI
TL;DR: The authors used tree-ring stable carbon and oxygen (δ13C and δ18O) isotopes from 21 living and 126 relict oaks (Quercus spp.) to reconstruct central European summer hydroclimate from 75'bce to 2018'ce.
Abstract: Europe’s recent summer droughts have had devastating ecological and economic consequences, but the severity and cause of these extremes remain unclear. Here we present 27,080 annually resolved and absolutely dated measurements of tree-ring stable carbon and oxygen (δ13C and δ18O) isotopes from 21 living and 126 relict oaks (Quercus spp.) used to reconstruct central European summer hydroclimate from 75 bce to 2018 ce. We find that the combined inverse δ13C and δ18O values correlate with the June–August Palmer Drought Severity Index from 1901–2018 at 0.73 (P < 0.001). Pluvials around 200, 720 and 1100 ce, and droughts around 40, 590, 950 and 1510 ce and in the twenty-first century, are superimposed on a multi-millennial drying trend. Our reconstruction demonstrates that the sequence of recent European summer droughts since 2015 ce is unprecedented in the past 2,110 years. This hydroclimatic anomaly is probably caused by anthropogenic warming and associated changes in the position of the summer jet stream. European summer droughts in recent years are anomalously severe compared with those of the previous 2,000 years, according to a synthesis of annually resolved tree-ring carbon and oxygen isotope records.

121 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that the GEOS-Chem atmospheric chemistry model successfully simulates the nitrate concentrations and trends and find that winter mean nitrate would have increased over 2013-2018 were it not for favourable meteorology.
Abstract: The concentration of fine particulate matter (PM2.5) across China has decreased by 30–50% over the period 2013–2018 due to stringent emission controls. However, the nitrate component of PM2.5 has not responded effectively to decreasing emissions of nitrogen oxides and has actually increased during winter haze pollution events in the North China Plain. Here, we show that the GEOS-Chem atmospheric chemistry model successfully simulates the nitrate concentrations and trends. We find that winter mean nitrate would have increased over 2013–2018 were it not for favourable meteorology. The principal cause of this nitrate increase is weaker deposition. The fraction of total inorganic nitrate as particulate nitrate instead of gaseous nitric acid over the North China Plain in winter increased from 90% in 2013 to 98% in 2017, as emissions of nitrogen oxides and sulfur dioxide decreased while ammonia emissions remained high. This small increase in the particulate fraction greatly slows down deposition of total inorganic nitrate and hence drives the particulate nitrate increase. Our results suggest that decreasing ammonia emissions would decrease particulate nitrate by driving faster deposition of total inorganic nitrate. Decreasing nitrogen oxide emissions is less effective because it drives faster oxidation of nitrogen oxides and slower deposition of total inorganic nitrate. Reduction of ammonia emissions may be effective in reducing the nitrate component of fine particulate matter air pollution across the North China Plain, according to the simulation of nitrate trends using the GEOS-Chem atmospheric chemistry model.

102 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate how separating soil carbon into particulate and mineral-associated organic matter (POM and MAOM, respectively) aids in the understanding of its vulnerability to climate change and identification of carbon sequestration strategies.
Abstract: Soil carbon sequestration is seen as an effective means to draw down atmospheric CO2, but at the same time warming may accelerate the loss of extant soil carbon, so an accurate estimation of soil carbon stocks and their vulnerability to climate change is required. Here we demonstrate how separating soil carbon into particulate and mineral-associated organic matter (POM and MAOM, respectively) aids in the understanding of its vulnerability to climate change and identification of carbon sequestration strategies. By coupling European-wide databases with soil organic matter physical fractionation, we assessed the current geographical distribution of mineral topsoil carbon in POM and MAOM by land cover using a machine-learning approach. Further, using observed climate relationships, we projected the vulnerability of carbon in POM and MAOM to future climate change. Arable and coniferous forest soils contain the largest and most vulnerable carbon stocks when cumulated at the European scale. Although we show a lower carbon loss from mineral topsoils with climate change (2.5 ± 1.2 PgC by 2080) than those in some previous predictions, we urge the implementation of coniferous forest management practices that increase plant inputs to soils to offset POM losses, and the adoption of best management practices to avert the loss of and to build up both POM and MAOM in arable soils. Particulate and mineral-associated soil organic carbon have different climate sensitivity and distributions in Europe, according to analyses of measurements of soil carbon fractions from 352 topsoils.

98 citations


Journal ArticleDOI
TL;DR: In this article, the authors present the measurement results of chemical composition of particulate matter in Delhi and Chennai and suggest that in the presence of excess ammonia in Delhi, high local emission of hydrochloric acid partitions into aerosol water.
Abstract: Many cities in India experience severe deterioration of air quality in winter. Particulate matter is a key atmospheric pollutant that impacts millions of people. In particular, the high mass concentration of particulate matter reduces visibility, which has severely damaged the economy and endangered human lives. But the underlying chemical mechanisms and physical processes responsible for initiating haze and fog formation remain poorly understood. Here we present the measurement results of chemical composition of particulate matter in Delhi and Chennai. We find persistently high chloride in Delhi and episodically high chloride in Chennai. These measurements, combined with thermodynamic modelling, suggest that in the presence of excess ammonia in Delhi, high local emission of hydrochloric acid partitions into aerosol water. The highly water-absorbing and soluble chloride in the aqueous phase substantially enhances aerosol water uptake through co-condensation, which sustains particle growth, leading to haze and fog formation. We therefore suggest that the high local concentration of gas-phase hydrochloric acid, possibly emitted from plastic-contained waste burning and industry, causes some 50% of the reduced visibility. Our work implies that identifying and regulating gaseous hydrochloric acid emissions could be critical to improve visibility and human health in India. Half of the reduced visibility due to haze formation in cities in India is attributed to local emission of gas-phase hydrochloric acid from waste-burning and industry, according to measurements of particulate matter and thermodynamic modelling.

91 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a continuous, annually resolved atmospheric 14C concentration (fractionation-corrected ratio of 14CO2 to CO2) record reconstructed from absolutely dated tree rings covering nearly all of the last millennium (ad 969-1933).
Abstract: The Sun provides the principal energy input into the Earth system and solar variability represents a significant external climate forcing. Although observations of solar activity (sunspots) cover only the last about 400 years, radionuclides produced by cosmic rays and stored in tree rings or ice cores serve as proxies for solar activity extending back thousands of years. However, the presence of weather-induced noise or low temporal resolution of long, precisely dated records hampers cosmogenic nuclide-based studies of short-term solar variability such as the 11-yr Schwabe cycle. Here we present a continuous, annually resolved atmospheric 14C concentration (fractionation-corrected ratio of 14CO2 to CO2) record reconstructed from absolutely dated tree rings covering nearly all of the last millennium (ad 969–1933). The high-resolution and precision 14C record reveals the presence of the Schwabe cycle over the entire time range. The record confirms the ad 993 solar energetic particle event and reveals two new candidates (ad 1052 and ad 1279), indicating that strong solar events that might be harmful to modern electronic systems probably occur more frequently than previously thought. In addition to showing decadal-scale solar variability over the last millennium, the high-temporal-resolution record of atmospheric radiocarbon also provides a useful benchmark for making radiocarbon dating more accurate over this interval. 11-year solar cycles consistently occurred throughout the last thousand years, according to a synthesis of annually resolved tree ring radiocarbon records from central Europe.

84 citations


Journal ArticleDOI
TL;DR: In this paper, the authors quantify the greenhouse gas emissions from material production and the carbon footprint of materials in industries that are the first users of materials, and in final consumption, using a multiregional input-output model of the global economy and the hypothetical extraction method.
Abstract: The production of materials is an important source of greenhouse gas emissions. To reduce emissions, policies aim to enhance material efficiency and the circular economy, but our understanding of the dynamics of material-related greenhouse gas emissions is limited. Here, I quantify the greenhouse gas emissions from material production and the carbon footprint of materials in industries that are the first users of materials, and in final consumption, using a multiregional input–output model of the global economy and the hypothetical extraction method. From 1995 to 2015, greenhouse gas emissions from just material production increased by 120%, with 11 billion tons of CO2-equivalent emitted in 2015. As a proportion of global emissions, material production rose from 15 to 23%. China accounted for 75% of the growth. In terms of the first use of materials, two-fifths of the carbon footprint of materials is attributed to construction, and two-fifths to the manufacturing of machinery, vehicles and other durable products. Overall, the replacement of existing or formation of new capital stocks now accounts for 60% of material-related emissions. Policies that address the rapidly growing capital stocks in emerging economies therefore offer the best prospect for emission reductions from material efficiency. Investment in capital formation between 1995 and 2015 has driven a 120% increase in the greenhouse gas emissions from material production, according to a multiregional input–output model of the global economy.

66 citations


Journal ArticleDOI
TL;DR: Recently, a wealth of new knowledge has revolutionized our understanding of the marine P cycle as mentioned in this paper, with a revised residence time that is similar to nitrate and a growing awareness that P transformations are under tight and elaborate microbial control.
Abstract: Phosphorus (P) is essential for life, but most of the global surface ocean is P depleted, which can limit marine productivity and affect ecosystem structure. Over recent decades, a wealth of new knowledge has revolutionized our understanding of the marine P cycle. With a revised residence time (~10–20 kyr) that is similar to nitrate and a growing awareness that P transformations are under tight and elaborate microbial control, the classic textbook version of a tectonically slow and biogeochemically simple marine P cycle has become outdated. P moves throughout the world’s oceans with a higher level of complexity than has ever been appreciated before, including a vast, yet poorly understood, P redox cycle. Here, we illustrate an oceanographically integral view of marine P by reviewing recent advances in the coupled cycles of P with carbon, nitrogen and metals in marine systems. Through this lens, P takes on a more dynamic and connected role in marine biogeochemistry than previously acknowledged, which points to unclear yet profound potential consequences for marine ecosystems, particularly under anthropogenic influence. Phosphorus plays a dynamic and complex role in marine biogeochemistry, which is closely connected to carbon, nitrogen and metal cycling, according to a literature synthesis on recent advances in understandings of the marine phosphorus cycle.

61 citations


Journal ArticleDOI
TL;DR: In this paper, elevation regulates the biophysical climate impacts of deforestation over tropical mountainous areas by integrating satellite-observed forest cover changes into a high-resolution land-atmosphere coupled model.
Abstract: Agriculture is expanding in tropical mountainous areas, yet its climatic effect is poorly understood. Here, we investigate how elevation regulates the biophysical climate impacts of deforestation over tropical mountainous areas by integrating satellite-observed forest cover changes into a high-resolution land–atmosphere coupled model. We show that recent forest conversion between 2000 and 2014 increased the regional warming by 0.022 ± 0.002 °C in the Southeast Asian Massif, 0.010 ± 0.007 °C in the Barisan Mountains (Maritime Southeast Asia), 0.042 ± 0.010 °C in the Serra da Espinhaco (South America) and 0.047 ± 0.008 °C in the Albertine Rift mountains (Africa) during the local dry season. The deforestation-driven local temperature anomaly can reach up to 2 °C where forest conversion is extensive. The warming from mountain deforestation depends on elevation, through the intertwined and opposing effects of increased albedo causing cooling and decreased evapotranspiration causing warming. As the elevation increases, the albedo effect increases in importance and the warming effect decreases, analogous to previously highlighted decreases of deforestation-induced warming with increasing latitude. As most new croplands are encroaching lands at low to moderate elevations, deforestation produces higher warming from suppressed evapotranspiration. Impacts of this additional warming on crop yields, land degradation and biodiversity of nearby intact ecosystems should be incorporated into future assessments. Deforestation causes elevation-dependent warming over tropical mountain regions, according to high-resolution climate simulations.

Journal ArticleDOI
TL;DR: In this paper, the authors use model experiments to show that there tends to be a weak opposite-sign SST response in the tropical Pacific when observed SSTs are specified in the Atlantic, while there is a weak same-sign same-Sign SST reaction in tropical Atlantic when observed sSTs were specified in tropical Pacific, according to pacemaker climate modelling experiments.
Abstract: Decadal climate prediction presumes there are decadal-timescale processes and mechanisms that, if initialized properly in models, potentially provide predictive skill more than one or two years into the future. Candidate mechanisms involve Pacific decadal variability and Atlantic multidecadal variability, elements of which involve slow fluctuations of tropical Pacific and Atlantic sea surface temperatures (SSTs) from positive anomalies (positive phase) to negative anomalies (negative phase). Here we use model experiments to show that there tends to be a weak opposite-sign SST response in the tropical Pacific when observed SSTs are specified in the Atlantic, while there is a weak same-sign SST response in the tropical Atlantic when observed SSTs are specified in the tropical Pacific. Net surface heat flux in the Atlantic and ocean dynamics in the Pacific play contrasting roles in the ocean response to specified SSTs in the respective basins. We propose that processes in the Pacific and Atlantic are sequentially interactive through the atmospheric Walker circulation along with contributions from midlatitude teleconnections for the Atlantic response to the Pacific. Atmospheric Walker circulation results in a two-way interaction between decadal-scale sea surface temperature variability in the Atlantic and Pacific, according to pacemaker climate modelling experiments.

Journal ArticleDOI
TL;DR: In this paper, the authors synthesize recent work showing that sea-ice reduction probably resulted from the interaction of a decadeslong ocean warming trend and an early spring southward advection of atmospheric heat, with an exceptional weakening of the Southern Hemisphere mid-latitude westerlies in late spring.
Abstract: Following years of record highs, an unexpected and precipitous reduction in Antarctic sea-ice extent started in 2016. This decline, lasting three years, was the most pronounced of the satellite era, equivalent to 30 years of sea-ice loss in the Arctic. Here, we synthesize recent work showing this sea-ice reduction probably resulted from the interaction of a decades-long ocean warming trend and an early spring southward advection of atmospheric heat, with an exceptional weakening of the Southern Hemisphere mid-latitude westerlies in late spring. We discuss what this event reveals about the underlying atmospheric and oceanic dynamical processes that control sea ice in the region and the ways in which shifting climate variability and remote forcings, especially from the tropics, influence these processes. Knowledge gaps show that further work is needed to improve future projections of changes in one of the largest seasonal phenomena on the planet. The combined effects of decades-long warming and particularly vigorous injections of atmospheric heat from lower latitudes were the likely culprits for sharp declines in sea-ice extent around Antarctica starting in 2016.

Journal ArticleDOI
TL;DR: In this paper, the authors constructed an unprecedented high-spatial-resolution dataset estimating global river mercury and methylmercury exports and found that rivers annually deliver 1,000 (minimum-maximum: 893-1,224) Mg mercury to coastal oceans, threefold greater than atmospheric deposition.
Abstract: Mercury is a potent neurotoxic substance and accounts for 250,000 intellectual disabilities annually. Worldwide, coastal fisheries contribute the majority of human exposure to mercury through fish consumption. Recent global mercury cycling and risk models attribute all the mercury loading to the ocean to atmospheric deposition. Nevertheless, new regional research has noted that the riverine mercury export to coastal oceans may also be significant to the oceanic burden of mercury. Here we construct an unprecedented high-spatial-resolution dataset estimating global river mercury and methylmercury exports. We find that rivers annually deliver 1,000 (minimum–maximum: 893–1,224) Mg mercury to coastal oceans, threefold greater than atmospheric deposition. Furthermore, high flow events, which are becoming more common with climate change, are responsible for a disproportionately large percentage of the export. Coastal oceans constitute 0.2% of the entire ocean volume but receive 27% of the external mercury input to the ocean. We estimate that the river mercury export could be responsible for a net annual export of 350 (interquartile range: 52–640) Mg mercury across the coastal–open-ocean boundary, although there is still high uncertainty around this estimate. Our results show that river export is the largest source of mercury to coastal oceans worldwide, and continued mercury risk modelling should incorporate the impact of rivers. Rivers transport about 1,000 Mg mercury annually to coastal oceans, which is threefold greater than the amount delivered by atmospheric deposition, according to a global analysis of mercury measurements in rivers.

Journal ArticleDOI
TL;DR: In this article, the authors argue that these redox-active metastable phases require activation by fluctuating redox conditions to maintain their high reactivity, and they present a novel framework that links microscale biogeochemical processes to large-scale hydrological processes.
Abstract: Redox-driven biogeochemical element cycles play a central role in converting organic matter in aquatic ecosystems. They also perform key functions such as removing nitrate, mitigating the formation of greenhouse gases and weakening the effects of contaminants. Recent research has revealed the presence of redox-active compounds in these ecosystems with hitherto unknown redox properties. These substances are metastable (that is, non-equilibrium solid phases), which can both donate and accept electrons. They are highly redox reactive and recyclable and may act as biogeobatteries by temporarily storing electrons. Their lifetime, however, is limited, and with time they become more crystalline and less reactive. In this Review, we argue that these redox-active metastable phases require activation by fluctuating redox conditions to maintain their high reactivity. In aquatic ecosystems, switching between oxidizing and reducing conditions can be achieved only through hydrological perturbations at hydrological interfaces (for example, water level fluctuations). We present a novel framework that links microscale biogeochemical processes to large-scale hydrological processes, and discuss implications and future research directions for biogeochemical element cycles in aquatic systems exposed to frequent hydrological disturbances. Highly redox-active compounds play an important role in biogeochemical element cycles in aquatic systems that are exposed to frequent hydrological disturbances.

Journal ArticleDOI
TL;DR: In this paper, a global compilation of high-frequency CO2 measurements was used to demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gCm−m−2 d−1) greater than those estimated from diurnal concentrations alone.
Abstract: Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain poorly constrained because of substantial spatial and temporal variability in dissolved CO2 concentrations. Using a global compilation of high-frequency CO2 measurements, we demonstrate that nocturnal CO2 emissions are on average 27% (0.9 gC m−2 d−1) greater than those estimated from diurnal concentrations alone. Constraints on light availability due to canopy shading or water colour are the principal controls on observed diel (24 hour) variation, suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. Because current global estimates of CO2 emissions to the atmosphere from running waters (0.65–1.8 PgC yr−1) rely primarily on discrete measurements of dissolved CO2 obtained during the day, they substantially underestimate the magnitude of this flux. Accounting for night-time CO2 emissions may elevate global estimates from running waters to the atmosphere by 0.20–0.55 PgC yr−1. Failing to account for emission differences between day and night will lead to an underestimate of global CO2 emissions from rivers by up to 0.55 PgC yr–1, according to analyses of high-frequency CO2 measurements.

Journal ArticleDOI
TL;DR: In this paper, the global carbon emissions from reservoirs were assessed by apportioning CO2 and methane emissions to water surfaces and drawdown areas using published areal emission rates, showing that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks.
Abstract: Reservoir drawdown areas—where sediment is exposed to the atmosphere due to water-level fluctuations—are hotspots for carbon dioxide (CO2) emissions. However, the global extent of drawdown areas is unknown, precluding an accurate assessment of the carbon budget of reservoirs. Here we show, on the basis of satellite observations of 6,794 reservoirs between 1985 and 2015, that 15% of the global reservoir area was dry. Exposure of drawdown areas was most pronounced in reservoirs close to the tropics and shows a complex dependence on climatic (precipitation, temperature) and anthropogenic (water use) drivers. We re-assessed the global carbon emissions from reservoirs by apportioning CO2 and methane emissions to water surfaces and drawdown areas using published areal emission rates. The new estimate assigns 26.2 (15–40) (95% confidence interval) TgCO2-C yr−1 to drawdown areas, and increases current global CO2 emissions from reservoirs by 53% (60.3 (43.2–79.5) TgCO2-C yr−1). Taking into account drawdown areas, the ratio between carbon emissions and carbon burial in sediments is 2.02 (1.04–4.26). This suggests that reservoirs emit more carbon than they bury, challenging the current understanding that reservoirs are net carbon sinks. Thus, consideration of drawdown areas overturns our conception of the role of reservoirs in the carbon cycle. Globally, reservoirs are net emitters of carbon when drawdown areas are taken into account, according to an analysis of satellite observations of reservoir surface area.

Journal ArticleDOI
TL;DR: In this paper, the authors present a model that incorporates randomized injection of reducing greenhouse gases and oxidation due to hydrogen escape to investigate the conditions responsible for these diverse observations, and find that Mars could have transitioned repeatedly from reducing (hydrogen-rich) to oxidizing (oxygen-rich), atmospheric conditions in its early history.
Abstract: Reconciling the geology of Mars with models of atmospheric evolution remains a major challenge. Martian geology is characterized by past evidence for episodic surface liquid water, and geochemistry indicating a slow and intermittent transition from wetter to drier and more oxidizing surface conditions. Here we present a model that incorporates randomized injection of reducing greenhouse gases and oxidation due to hydrogen escape to investigate the conditions responsible for these diverse observations. We find that Mars could have transitioned repeatedly from reducing (hydrogen-rich) to oxidizing (oxygen-rich) atmospheric conditions in its early history. Our model predicts a generally cold early Mars, with mean annual temperatures below 240 K. If peak reducing-gas release rates and background carbon dioxide levels are high enough, it nonetheless exhibits episodic warm intervals sufficient to degrade crater walls, form valley networks and create other fluvial/lacustrine features. Our model also predicts transient build-up of atmospheric oxygen, which can help explain the occurrence of oxidized mineral species such as manganese oxides at Gale Crater. We suggest that the apparent Noachian–Hesperian transition from phyllosilicate deposition to sulfate deposition around 3.5 billion years ago can be explained as a combined outcome of increasing planetary oxidation, decreasing groundwater availability and a waning bolide impactor flux, which dramatically slowed the remobilization and thermochemical destruction of surface sulfates. Ultimately, rapid and repeated variations in Mars’s early climate and surface chemistry would have presented both challenges and opportunities for any emergent microbial life. Mars’s early climate and surface chemistry varied between a generally cold, oxidizing environment and warmer, more reducing conditions, according to a model of atmospheric evolution driven by stochastic, random injection of greenhouse gases.

Journal ArticleDOI
TL;DR: In this article, the authors use stream-water chemistry across an erosion rate gradient of three orders of magnitude in shales and sandstones of southern Taiwan, and find that sulfide and carbonate weathering rates rise with increasing erosion, while silicate weathering remains steady.
Abstract: Global climate is thought to be modulated by the supply of minerals to Earth’s surface Whereas silicate weathering removes carbon dioxide (CO2) from the atmosphere, weathering of accessory carbonate and sulfide minerals is a geologically relevant source of CO2 Although these weathering pathways commonly operate side by side, we lack quantitative constraints on their co-variation across erosion rate gradients Here we use stream-water chemistry across an erosion rate gradient of three orders of magnitude in shales and sandstones of southern Taiwan, and find that sulfide and carbonate weathering rates rise with increasing erosion, while silicate weathering rates remain steady As a result, on timescales shorter than marine sulfide compensation (approximately 106–107 years), weathering in rapidly eroding terrain leads to net CO2 emission rates that are at least twice as fast as CO2 sequestration rates in slow-eroding terrain We propose that these weathering reactions are linked and that sulfuric acid generated from sulfide oxidation boosts carbonate solubility, whereas silicate weathering kinetics remain unaffected, possibly due to efficient buffering of the pH We expect that these patterns are broadly applicable to many Cenozoic mountain ranges that expose marine metasediments Unlike sulfide and carbonate, silicate weathering does not increase with physical erosion, which could result in a net release of carbon dioxide associated with uplift, according to stream-water chemistry of southern Taiwan

Journal ArticleDOI
Abstract: Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide. Anthropogenic climate change is impacting the temperature and ice cover of lakes across the globe, according to an attribution analysis based on hindcasts and projections from lake models.

Journal ArticleDOI
TL;DR: In this paper, the authors present geophysical and marine data from the MAYOBS1 cruise, which reveal that by May 2019, this activity formed an 820m-tall, 5'km³ volcanic edifice on the seafloor.
Abstract: Volcanic eruptions shape Earth’s surface and provide a window into deep Earth processes. How the primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly understood. Since 10 May 2018, magmatic activity has occurred offshore eastern Mayotte (North Mozambique channel), associated with large surface displacements, very-low-frequency earthquakes and exceptionally deep earthquake swarms. Here we present geophysical and marine data from the MAYOBS1 cruise, which reveal that by May 2019, this activity formed an 820-m-tall, ~5 km³ volcanic edifice on the seafloor. This is the largest active submarine eruption ever documented. Seismic and deformation data indicate that deep (>55 km depth) magma reservoirs were rapidly drained through dykes that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated beneath an ancient caldera structure. We locate the new volcanic edifice at the tip of a 50-km-long ridge composed of many other recent edifices and lava flows. This volcanic ridge is an extensional feature inside a wide transtensional boundary that transfers strain between the East African and Madagascar rifts. We propose that the massive eruption originated from hot asthenosphere at the base of a thick, old, damaged lithosphere.

Journal ArticleDOI
TL;DR: In this article, the authors explore soil amendment with powdered basalt in natural ecosystems and show that basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested.
Abstract: Negative emission technologies underpin socioeconomic scenarios consistent with the Paris Agreement. Afforestation and bioenergy coupled with carbon dioxide (CO2) capture and storage are the main land negative emission technologies proposed, but the range of nature-based solutions is wider. Here we explore soil amendment with powdered basalt in natural ecosystems. Basalt is an abundant rock resource, which reacts with CO2 and removes it from the atmosphere. Besides, basalt improves soil fertility and thereby potentially enhances ecosystem carbon storage, rendering a global CO2 removal of basalt substantially larger than previously suggested. As this is a fully developed technology that can be co-deployed in existing land systems, it is suited for rapid upscaling. Achieving sufficiently high net CO2 removal will require upscaling of basalt mining, deploying systems in remote areas with a low carbon footprint and using energy from low-carbon sources. We argue that basalt soil amendment should be considered a prominent option when assessing land management options for mitigating climate change, but yet unknown side-effects, as well as limited data on field-scale deployment, need to be addressed first. The enhanced CO2 uptake by vegetation in response to powdered rock should be considered in assessing the feasibility of enhanced weathering as a negative emission technology in mitigating climate change, suggest simulations of a land surface model.

Journal ArticleDOI
TL;DR: In this paper, the authors used ship and station measurements around the Antarctic Peninsula to study new particle formation in the Weddell Sea and its marginal ice zone, which are an important source of volatile sulfur and alkylamines.
Abstract: New particle formation is globally one of the major sources of aerosol particles and cloud condensation nuclei. As primary emissions are a minor contributor to particle concentrations, secondary new particle formation processes are probably key in determining Antarctic aerosol number concentrations. However, our knowledge of new particle formation and its mechanisms in Antarctica is very limited. Here we study summertime open ocean and coastal new particle formation in the Antarctic Peninsula region based on both ship and station measurements. The rates of particle formation relative to sulfuric acid concentrations, as well as the sulfuric acid dimer-to-monomer ratios, were similar to those seen for sulfuric acid–dimethylamine–water nucleation. Numerous sulfuric acid–amine peaks were identified during new particle formation events, providing evidence that alkylamines were the bases that facilitated sulfuric acid nucleation. Most new particle formation events occurred in air masses arriving from the ice-covered Weddell Sea and its marginal ice zone, which are an important source of volatile sulfur and alkylamines. This nucleation mechanism is more efficient than the ion-induced sulfuric acid–ammonia pathway previously observed in Antarctica, and one that can occur rapidly under neutral conditions. This hitherto overlooked pathway to biologically driven aerosol formation should be considered for estimating aerosol and cloud condensation nuclei numbers in ocean–sea ice–aerosols–climate feedback models. New particles can form rapidly in Antarctica through the reactions of sulfuric acid and amines, suggest ship and station measurements around the Antarctic Peninsula.

Journal ArticleDOI
TL;DR: In this paper, an integrated temperature-humidity metric for the health impact of heat, namely, the extreme wet-bulb temperature (TW), is controlled by established atmospheric dynamics and thus can be robustly projected on regional scales.
Abstract: Extreme heat under global warming is a concerning issue for the growing tropical population. However, model projections of extreme temperatures, a widely used metric for extreme heat, are uncertain on regional scales. In addition, humidity needs to be taken into account to estimate the health impact of extreme heat. Here we show that an integrated temperature–humidity metric for the health impact of heat, namely, the extreme wet-bulb temperature (TW), is controlled by established atmospheric dynamics and thus can be robustly projected on regional scales. For each 1 °C of tropical mean warming, global climate models project extreme TW (the annual maximum of daily mean or 3-hourly values) to increase roughly uniformly between 20° S and 20° N latitude by about 1 °C. This projection is consistent with theoretical expectation based on tropical atmospheric dynamics, and observations over the past 40 years, which gives confidence to the model projection. For a 1.5 °C warmer world, the probable (66% confidence interval) increase of regional extreme TW is projected to be 1.33–1.49 °C, whereas the uncertainty of projected extreme temperatures is 3.7 times as large. These results suggest that limiting global warming to 1.5 °C will prevent most of the tropics from reaching a TW of 35 °C, the limit of human adaptation. Limiting global warming to 1.5 °C will prevent tropical regions from reaching the limit of human adaptability, according to robust dynamical constraints on projected heat stress.

Journal ArticleDOI
TL;DR: In this paper, a statistical analysis of satellite-based long-wavelength (10.780-11.280μm) infrared data was conducted to detect large-scale thermal unrest in the years prior to eruptions at five different volcanoes, probably due to enhanced underground hydrothermal activity.
Abstract: Identifying the observables that warn of volcanic eruptions is a major challenge in natural hazard management. A potentially important observable is the release of heat through volcano surfaces, which represents a major energy source at quiescent volcanoes. However, it remains unclear whether surface heat emissions respond to pre-eruptive processes and vary before eruption. Here we show through a statistical analysis of satellite-based long-wavelength (10.780–11.280 μm) infrared data that the last magmatic and phreatic eruptions of five different volcanoes were preceded by subtle but significant long-term (years), large-scale (tens of square kilometres) increases in their radiant heat flux (up to ~1 °C in median radiant temperature). Large-scale thermal unrest is detected even before eruptions that were not anticipated from other volcano monitoring methods, such as the 2014 phreatic eruption of Ontake (Japan) and the 2015 magmatic eruption of Calbuco (Chile). We attribute large-scale thermal unrest to the enhancement of underground hydrothermal activity, and suggest that such analysis of satellite-based infrared observations can improve constraints on the thermal budget of volcanoes, early detection of pre-eruptive conditions and assessments of volcanic alert levels. Large-scale radiant heat flux increased in the years prior to eruptions at five volcanoes, probably due to enhanced underground hydrothermal activity, according to an analysis of satellite infrared data.

Journal ArticleDOI
TL;DR: In this article, a high-resolution CO2 record from the last glacial period from an ice core drilled in West Antarctica was used to define the timing of millennial and centennial CO2 variations with respect to Antarctic temperature and abrupt changes in Northern Hemisphere climate during Heinrich stadials and Dansgaard-Oeschger events.
Abstract: During the last glacial period, atmospheric carbon dioxide (CO2) closely followed Antarctic temperature on millennial timescales. This strong correlation between Antarctic climate and atmospheric CO2 has led to suggestions that reorganizations of Southern Ocean circulation and/or biogeochemistry were the dominant cause of these variations. However, recent work also revealed centennial-scale changes in CO2 that appear unrelated to Antarctic climate and may represent additional modes of carbon cycle variability. Here we present a high-resolution CO2 record from the last glacial period from an ice core drilled in West Antarctica. This reconstruction precisely defines the timing of millennial and centennial CO2 variations with respect to Antarctic temperature and abrupt changes in Northern Hemisphere climate during Heinrich stadials and Dansgaard–Oeschger events. On the millennial scale, CO2 tracks Antarctic climate variability, but peak CO2 levels lag peak Antarctic temperature by more than 500 years. Centennial-scale CO2 increases of up to 10 ppm occurred within some Heinrich stadials, and increases of ~5 ppm occurred at the abrupt warming of most Dansgaard–Oeschger events. Regression analysis suggests that the CO2 variations can be explained by a combination of one mechanism operating on the timescale of Antarctic climate variability and a second responding on the timescale of Dansgaard–Oeschger events. Consistent with our statistical analysis, carbon cycle box-model simulations illustrate a plausible scenario where Southern Hemisphere processes contribute the majority of the CO2 variability during the last glacial period, but Northern Hemisphere processes are the crucial drivers of centennial-scale variability. Southern Hemisphere processes largely set Antarctic climate during the last glacial, though events in the Northern Hemisphere strongly impacted short, centennial-scale changes, according to an analysis of high-resolution carbon dioxide and temperature records from an Antarctic ice core.

Journal ArticleDOI
TL;DR: The Atlantic Meridional Overturning Circulation (AMOC) is one of Earth's major ocean circulation systems and has a major impact on climate and has been observed to be weaker than it has been for the last millennium.
Abstract: The Atlantic Meridional Overturning Circulation (AMOC)—one of Earth’s major ocean circulation systems—redistributes heat on our planet and has a major impact on climate Here, we compare a variety of published proxy records to reconstruct the evolution of the AMOC since about ad 400 A fairly consistent picture of the AMOC emerges: after a long and relatively stable period, there was an initial weakening starting in the nineteenth century, followed by a second, more rapid, decline in the mid-twentieth century, leading to the weakest state of the AMOC occurring in recent decades The Atlantic Meridional Overturning Circulation (AMOC) is currently distinctly weaker than it has been for the last millennium, according to a synthesis of proxy records derived from a range of techniques

Journal ArticleDOI
TL;DR: In this paper, a suite of global climate model projections is used to show that greenhouse warming drives a robust intensification of ENSO-driven variability in boreal winter tropical upper tropospheric temperature and geopotential height, tropical humidity, subtropical jets and tropical Pacific rainfall.
Abstract: The El Nino/Southern Oscillation (ENSO) has a profound influence on global climate and ecosystems. Determining how the ENSO responds to greenhouse warming is a crucial issue in climate science. Despite recent progress in understanding, the responses of important ENSO characteristics, such as air temperature and atmospheric circulation, are still unknown. Here, we use a suite of global climate model projections to show that greenhouse warming drives a robust intensification of ENSO-driven variability in boreal winter tropical upper tropospheric temperature and geopotential height, tropical humidity, subtropical jets and tropical Pacific rainfall. These robust changes are primarily due to the Clausius–Clapeyron relationship, whereby saturation vapour pressure increases nearly exponentially with increasing temperature. Therefore, the vapour response to temperature variability is larger under a warmer climate. As a result, under global warming, even if the ENSO’s sea surface temperature remains unchanged, the response of tropical lower tropospheric humidity to the ENSO amplifies, which in turn results in major reorganization of atmospheric temperature, circulation and rainfall. These findings provide a novel theoretical constraint for ENSO changes and reduce uncertainty in the ENSO response to greenhouse warming. Greenhouse gas-induced warming intensifies atmospheric variability associated with the El Nino/Southern Oscillation, according to an analysis of global climate model projections.

Journal ArticleDOI
TL;DR: In this paper, a >12,000 km-long plate boundary formed between the Indian and African plates around 105 Myr ago by a coeval mantle plume rise below Madagascar-India as the only viable trigger of this plate rotation.
Abstract: The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature; how plate boundaries are created over thousands of kilometres in geologically short periods remains elusive. Here we show from geological observations that a >12,000-km-long plate boundary formed between the Indian and African plates around 105 Myr ago. This boundary comprised subduction segments from the eastern Mediterranean region to a newly established India–Africa rotation pole in the west Indian Ocean, where it transitioned into a ridge between India and Madagascar. We identify coeval mantle plume rise below Madagascar–India as the only viable trigger of this plate rotation. For this, we provide a proof of concept by torque balance modelling, which reveals that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large-plate rotation, initiating divergent and convergent plate boundaries far away from the plume head. We suggest that this mechanism may be an underlying cause of the emergence of modern plate tectonics. A mantle plume induced plate rotation that initiated subduction and rifting along a >12,000 km plate boundary about 105 Myr ago, according to an analysis of geological data and numerical simulations.

Journal ArticleDOI
TL;DR: In this article, the authors used an observation-based continental-scale statistical model to show that forestation of rain-fed agricultural land in Europe triggers substantial changes in precipitation, in particular in winter.
Abstract: Land-cover changes can affect the climate by altering the water and energy balance of the land surface. Numerous modelling studies have indicated that alterations at the land surface can result in considerable changes in precipitation. Yet land-cover-induced precipitation changes remain largely unconstrained by observations. Here we use an observation-based continental-scale statistical model to show that forestation of rain-fed agricultural land in Europe triggers substantial changes in precipitation. Locally, we find an increase in precipitation following forestation, in particular in winter, which is supported by a paired rain-gauge analysis. In addition, forests are estimated to increase downwind precipitation in most regions during summer. By contrast, the downwind effect in winter is positive in coastal areas but near neutral and negative in Continental and Northern Europe, respectively. The combined local and non-local effects of a realistic reforestation scenario, constrained by sustainability safeguards, are estimated to increase summer precipitation by 7.6 ± 6.7% on average over Europe (0.13 ± 0.11 mm d–1), potentially offsetting a substantial part of the projected precipitation decrease from climate change. We therefore conclude that land-cover-induced alterations of precipitation should be considered when developing land-management strategies for climate change adaptation and mitigation. Forestation over Europe triggers substantial local and downwind precipitation changes, according to results from an observation-based continental-scale statistical model.