scispace - formally typeset
Open AccessJournal ArticleDOI

Contribution of platelets to tumour metastasis.

Brunhilde Felding-Habermann
- 01 Feb 2011 - 
- Vol. 11, Iss: 2, pp 123-134
TLDR
Contributions of platelets to tumour cell survival and spread suggest platelets as a new avenue for therapy.
Abstract
Experimental evidence suggests that platelets contribute to metastasis through adhesive and haemostatic functions that promote cancer cell survival, immune evasion and interactions with vascular cells to assist organ colonization from the bloodstream. Extensive experimental evidence shows that platelets support tumour metastasis. The activation of platelets and the coagulation system have a crucial role in the progression of cancer. Within the circulatory system, platelets guard tumour cells from immune elimination and promote their arrest at the endothelium, supporting the establishment of secondary lesions. These contributions of platelets to tumour cell survival and spread suggest platelets as a new avenue for therapy.

read more

Citations
More filters
Journal ArticleDOI

Computational and Experimental Models of Cancer Cell Response to Fluid Shear Stress

TL;DR: The fluid-generated forces that tumor cells are exposed to in the vascular and tumor microenvironments are reviewed, and recent computational and experimental models that have revealed mechanotransduction phenomena that may play a role in the metastatic process are discussed.
Journal ArticleDOI

Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences.

TL;DR: The interesting contribution of platelets to cancer and cancer-associated thrombosis requires the standardization of preclinical and clinical models.
Journal ArticleDOI

Antitumor Platelet‐Mimicking Magnetic Nanoparticles

TL;DR: An all‐in‐one nanoplatform possessed with long circulation and cancer targeting capabilities for personalized cancer theranostics is fabricated and PLT‐MNs exhibit stellar immune compatibility.
Journal ArticleDOI

Targeted Nanotechnology for Cancer Imaging

TL;DR: This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer.
References
More filters
Journal ArticleDOI

Tumor Angiogenesis: Therapeutic Implications

TL;DR: This new capillary growth is even more vigorous and continuous than a similar outgrowth of capillary sprouts observed in 2016 and is likely to be accompanied by neovascularization.
Journal ArticleDOI

Cancer Metastasis: Building a Framework

TL;DR: Understanding of the origins and nature of cancer metastasis and the selection of traits that are advantageous to cancer cells is promoted.
Journal ArticleDOI

Dissemination and growth of cancer cells in metastatic sites

TL;DR: Inhibition of the growth of metastases in secondary sites offers a promising approach for cancer therapy and could help to improve the treatment of metastatic disease.
Journal ArticleDOI

Microenvironmental regulation of metastasis

TL;DR: Experimental data demonstrating the role of the microenvironment in metastasis is described, areas for future research are identified and possible new therapeutic avenues are suggested.
Journal ArticleDOI

Integrins in cancer: biological implications and therapeutic opportunities

TL;DR: Clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.
Related Papers (5)