scispace - formally typeset
Open AccessJournal ArticleDOI

Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers

Reads0
Chats0
TLDR
In this paper, the authors report the fabrication of back-gated field effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes.
Abstract
We report the fabrication of back-gated field-effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes. The MoSe2 FETs are n-type and possess a high gate modulation, with On/Off ratios larger than 106. The devices show asymmetric characteristics upon swapping the source and drain, a finding explained by the presence of Schottky barriers at the metal contact/MoSe2 interface. Using four-point, back-gated devices, we measure the intrinsic conductivity and mobility of MoSe2 as a function of gate bias, and temperature. Samples with a room temperature mobility of ∼ 50 cm2/V·s show a strong temperature dependence, suggesting phonons are a dominant scattering mechanism.

read more

Citations
More filters
Journal ArticleDOI

Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides

TL;DR: By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Journal ArticleDOI

Two-dimensional flexible nanoelectronics.

TL;DR: With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Journal ArticleDOI

Mobility engineering and metal-insulator transition in monolayer MoS2

TL;DR: In this article, the authors report on electrical transport measurements on MoS2 FETs in different dielectric configurations and show clear evidence of the strong suppression of charge impurity scattering in dual-gate devices with a top-gate Dielectric together with phonon scattering that shows a weaker than expected temperature dependence.
References
More filters
Journal ArticleDOI

High-performance single layered WSe₂ p-FETs with chemically doped contacts.

TL;DR: High performance p-type field-effect transistors based on single layered WSe(2) as the active channel with chemically doped source/drain contacts and high-κ gate dielectrics are reported.
Journal ArticleDOI

Integrated Circuits Based on Bilayer MoS2 Transistors

TL;DR: This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology based on the semiconducting nature of molybdenum disulfide.
Journal ArticleDOI

Fabrication of Single‐ and Multilayer MoS2 Film‐Based Field‐Effect Transistors for Sensing NO at Room Temperature

TL;DR: Although the single-layer MoS(2) device shows a rapid response after exposure to NO, the current was found to be unstable, and these FET devices can be used as gas sensors to detect nitrous oxide.
Journal ArticleDOI

MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap

TL;DR: The fabrication of top-gate phototransistors based on a few-layered MoS(2) nanosheet with a transparent gate electrode exhibited excellent photodetection capabilities for red light, while those with single- and double-layers turned out to be quite useful for green light detection.
Journal ArticleDOI

Integrated Circuits and Logic Operations Based on Single-Layer MoS2

TL;DR: This report reports on the first integrated circuit based on a two-dimensional semiconductor MoS(2) transistors, capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits.
Related Papers (5)