scispace - formally typeset
Journal ArticleDOI

Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources.

TLDR
A revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks, and the successful low-temperature growth can be qualitatively understood from the first principles calculations.
Abstract
Graphene has attracted a lot of research interest owing to its exotic properties and a wide spectrum of potential applications. Chemical vapor deposition (CVD) from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth. However, high growth temperature, typically 1000 °C, is required for such growth. Here we demonstrate a revised CVD route to grow graphene on Cu foils at low temperature, adopting solid and liquid hydrocarbon feedstocks. For solid PMMA and polystyrene precursors, centimeter-scale monolayer graphene films are synthesized at a growth temperature down to 400 °C. When benzene is used as the hydrocarbon source, monolayer graphene flakes with excellent quality are achieved at a growth temperature as low as 300 °C. The successful low-temperature growth can be qualitatively understood from the first principles calculations. Our work might pave a way to an undemanding route for economical and convenient graphene growth.

read more

Citations
More filters
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Production and processing of graphene and 2d crystals

TL;DR: Graphene is at the center of an ever growing research effort due to its unique properties, interesting for both fundamental science and applications as mentioned in this paper, and a key requirement for applications is the development of industrial-scale, reliable, inexpensive production processes.
Journal ArticleDOI

Graphene: An Emerging Electronic Material

TL;DR: The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies.
Journal ArticleDOI

Graphene-based electrodes for electrochemical energy storage

TL;DR: In this paper, the authors provide an overview of recent research progress in graphene-based materials as electrodes for electrochemical energy storage, including the use of graphene for improving the performance of lithium-sulfur and lithium-oxygen batteries.
Journal ArticleDOI

Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics

TL;DR: In this paper, the structural properties of 2D materials, such as defects and dopants, the number of layers, composition, phase, strain, and other structural characteristics, are discussed and analyzed.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.

TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Related Papers (5)