scispace - formally typeset
Open AccessJournal ArticleDOI

Repair of strand breaks by homologous recombination.

Reads0
Chats0
TLDR
The enzymology of the process is discussed, followed by studies on DSB repair in living cells, and a historical context for the current view of HR is provided and how DSBs are processed during HR as well as interactions with other D SB repair pathways are described.
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Germline mutations in apoptosis pathway genes in ovarian cancer; the functional role of a TP53I3 (PIG3) variant in ROS production and DNA repair.

TL;DR: In this article, the authors employed functional assays and demonstrated that cells expressing TP53I3 pS252X displayed decreased homologous recombination repair efficiency and increased sensitivity to chemotherapeutic drugs bleomycin, mitomycin c, and etoposide.
Journal ArticleDOI

The association of a single-nucleotide variant in the microRNA-146a with advanced colorectal cancer prognosis.

TL;DR: The results suggest that single-nucleotide variant rs2910164 does not influence the colorectal cancer risk in Brazilian patients; however, the GG genotype could act as a factor of worse prognosis in patients with advanced disease due to suppression of BRCA1/2 modulated by miR-146a.
Book ChapterDOI

Telomeres and Chromosomal Translocations : There's a Ligase at the End of the Translocation.

TL;DR: This chapter focuses on a specific subset of translocations that involve the very end of a chromosome (a telomere) and the DNA repair systems thought to be responsible for their genesis with an emphasis on underscoring the differences between other species and human cells.
Journal ArticleDOI

Genomic Reporter Constructs to Monitor Pathway-Specific Repair of DNA Double-Strand Breaks

TL;DR: This review will discuss and compare the available DSB-repair pathway reporters, provide essential considerations to guide reporter choice, and give an outlook on potential future developments.
References
More filters
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

RNA-Guided Human Genome Engineering via Cas9

TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Journal ArticleDOI

Efficient genome editing in zebrafish using a CRISPR-Cas system

TL;DR: It is shown that the CRISPR-Cas system functions in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies similar to those obtained using zinc finger nucleases and transcription activator-like effector nucleases.
Related Papers (5)