scispace - formally typeset
Open AccessJournal ArticleDOI

Repair of strand breaks by homologous recombination.

Reads0
Chats0
TLDR
The enzymology of the process is discussed, followed by studies on DSB repair in living cells, and a historical context for the current view of HR is provided and how DSBs are processed during HR as well as interactions with other D SB repair pathways are described.
Abstract
In this review, we discuss the repair of DNA double-strand breaks (DSBs) using a homologous DNA sequence (i.e., homologous recombination [HR]), focusing mainly on yeast and mammals. We provide a historical context for the current view of HR and describe how DSBs are processed during HR as well as interactions with other DSB repair pathways. We discuss the enzymology of the process, followed by studies on DSB repair in living cells. Whenever possible, we cite both original articles and reviews to aid the reader for further studies.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors

TL;DR: This work analyzes key considerations when choosing genome editing agents and identifies opportunities for future improvements and applications in basic research and therapeutics.
Journal ArticleDOI

Gene therapy returns to centre stage

TL;DR: Technology for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.
Journal ArticleDOI

CRISPR-Cas guides the future of genetic engineering.

TL;DR: The basic mechanisms that set the CRISPR-Cas toolkit apart from other programmable gene-editing technologies are described, highlighting the diverse and naturally evolved systems now functionalized as biotechnologies.
Journal ArticleDOI

Homologous Recombination and Human Health: The Roles of BRCA1, BRCA2, and Associated Proteins

TL;DR: This review summarizes recent findings on BRCA1, BRCa2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Journal ArticleDOI

Recombination, Pairing, and Synapsis of Homologs during Meiosis

TL;DR: This review provides an overview of recombination-mediated processes in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex.
References
More filters
Journal ArticleDOI

RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins

TL;DR: It is suggested that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions.
Journal ArticleDOI

MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks

TL;DR: It is shown that MDC1/NFBD1-gammaH2AX complex formation regulates H2AX phosphorylation and is required for normal radioresistance and efficient accumulation of DNA-damage-response proteins on damaged chromatin.
Journal ArticleDOI

The Bloom's syndrome helicase suppresses crossing over during homologous recombination

TL;DR: It is shown that mutations in BLM and hTOPO IIIα together effect the resolution of a recombination intermediate containing a double Holliday junction and prevents exchange of flanking sequences, which has wider implications for the understanding of the process of homologous recombination and the mechanisms that exist to prevent tumorigenesis.
Journal ArticleDOI

Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination.

TL;DR: A ‘rescuable’ plasmid containing globin gene sequences allowing recombination with homologous chromosomal sequences has enabled us to produce, score and clone mammalian cells with the plasmids integrated into the human β-globin locus.
Journal ArticleDOI

Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications

TL;DR: How the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells is outlined.
Related Papers (5)