scispace - formally typeset
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TLDR
A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

read more

Citations
More filters
Journal ArticleDOI

P‐14: Effects of Film Density on IGZO Based TFT Device Reliability

TL;DR: In this article , the density effects of IGZO films were studied based on DFT calculations, and the electrical and physical properties between the high-density film and the conventional film were compared.
Journal ArticleDOI

Ultrashort 15-nm flexible radio frequency ITO transistors enduring mechanical and temperature stress

TL;DR: In this article , the scaling and performance bottlenecks in flexible transistors are addressed by demonstrating natively flexible RF indium tin oxide transistors with deeply scaled 15-nm-long channel, capable of operating in the 10-GHz frequency range.
Journal ArticleDOI

Embedded nanopattern for selectively suppressed thermal conductivity and enhanced transparency in a transparent conducting oxide film

TL;DR: In this article , an embedded nanopattern structure is filled with indium tin oxide (ITO) and sandwiched between two ITO layers, and the resulting triple-layered structure exhibits reduced thermal conductivity and excellent electrical conductivity.

High-Performance Top-Gated and Double-Gated Oxide–Semiconductor Ferroelectric Field-Effect Transistor Enabled by Channel Defect Self-Compensation Effect

TL;DR: In this article , the authors demonstrate a low-thermal budget defect-engineered process to achieve top-gated oxide-semiconductor ferroelectric field effect transistors (FeFETs).

Thin film transistors with printed semiconductive oxide channel and silver source-drain electrodes

Z Chen, +1 more
TL;DR: In this paper, an ink-jet printed silver was used as source/drain electrodes to construct thin film transistors (TFTs) with solution-processed zinc indium tin oxide (ZITO) channel layer layer annealed at 400 C.
References
More filters
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Book

Fundamentals of Modern VLSI Devices

Yuan Taur, +1 more
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Journal ArticleDOI

P-type electrical conduction in transparent thin films of CuAlO2

TL;DR: In this paper, the authors describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency, and illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p- type conductivity up to 1'S'cm−1.
Journal ArticleDOI

Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films

TL;DR: In this article, the authors investigated carrier transport in a crystalline oxide semiconductor InGaO3(ZnO)5 using single-crystalline thin films and showed that when carrier concentration is less than 2×1018cm−3, logarithm of electrical conductivity decreases in proportion to T−1∕4 and room-temperature Hall mobility was as low as ∼1cm2(Vs)−1.
Related Papers (5)