scispace - formally typeset
Journal ArticleDOI

Space gravitational-wave antennas DECIGO and B-DECIGO

Seiji Kawamura, +144 more
- 01 Sep 2019 - 
- Vol. 28, Iss: 12, pp 1845001
Reads0
Chats0
TLDR
The B-DECIGO as discussed by the authors is a small-scale version of DECIGO with a sensitivity slightly worse than that of DECI-HERT, yet good enough to provide frequent detection of gravitational waves.
Abstract
DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a future Japanese space gravitational-wave antenna. The most important objective of DECIGO, among various sciences to be aimed at, is to detect gravitational waves coming from the inflation of the universe. DECIGO consists of four clusters of spacecraft, and each cluster consists of three spacecraft with three Fabry–Perot Michelson interferometers. As a pathfinder mission of DECIGO, B-DECIGO will be launched, hopefully in the 2020s, to demonstrate technologies necessary for DECIGO as well as to lead to fruitful multimessenger astronomy. B-DECIGO is a small-scale or simpler version of DECIGO with the sensitivity slightly worse than that of DECIGO, yet good enough to provide frequent detection of gravitational waves.

read more

Citations
More filters
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Journal ArticleDOI

Challenges for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e11224" altimg="si239.svg"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math>CDM: An update

TL;DR: In a recent review as mentioned in this paper , a number of challenges to the standard $\Lambda$CDM model have been emerging during the past few years as the accuracy of cosmological observations improves.
Journal ArticleDOI

Current status of space gravitational wave antenna DECIGO and B-DECIGO

Seiji Kawamura, +87 more
TL;DR: The Deci-hertz Interferometer Gravitational Wave Observatory (DECIGO) is a future Japanese space mission with a frequency band of 0.1 Hz to 10 Hz as discussed by the authors.
Journal ArticleDOI

Gravitational-wave physics and astronomy in the 2020s and 2030s

TL;DR: The field of gravitational-wave astronomy is just starting, and this Roadmap of future developments surveys the potential for growth in bandwidth and sensitivity of future gravitationalwave detectors, and discusses the science results anticipated to come from upcoming instruments as discussed by the authors.
Journal ArticleDOI

Phase transitions in the early universe

TL;DR: Hindmarsh et al. as mentioned in this paper provided the necessary basics to understand first-order phase transitions in the early universe, to outline how they leave imprints in gravitational waves, and advertise how those gravitational waves could be detected in the future.
References
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Related Papers (5)

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more