scispace - formally typeset
Open AccessJournal ArticleDOI

Targeting potential drivers of COVID-19: Neutrophil extracellular traps.

Reads0
Chats0
TLDR
Autopsy results and literature are presented supporting the hypothesis that neutrophil extracellular traps (NETs) may contribute to organ damage and mortality in COVID-19, and existing drugs that target NETs, although unspecific, may benefit CO VID-19 patients.
Abstract
Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10-15% of patients progresses to acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature are presented supporting the hypothesis that a little known yet powerful function of neutrophils-the ability to form neutrophil extracellular traps (NETs)-may contribute to organ damage and mortality in COVID-19. We show lung infiltration of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of COVID-19.

read more

Citations
More filters
Journal ArticleDOI

Immunology of COVID-19: Current State of the Science.

Nicolas Vabret, +87 more
- 16 Jun 2020 - 
TL;DR: The current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death are summarized.
Journal ArticleDOI

Neutrophil extracellular traps in COVID-19.

TL;DR: Sera from patients with COVID-19 have elevated levels of cell-free DNA, myeloperoxidase(MPO)-DNA, and citrullinated histone H3 (Cit-H3); the latter two are highly specific markers of NETs, which may contribute to cytokine release and respiratory failure.
Journal ArticleDOI

Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.

Jonas Schulte-Schrepping, +137 more
- 17 Sep 2020 - 
TL;DR: This study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
References
More filters
Journal ArticleDOI

Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.

TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.
Journal ArticleDOI

Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China.

TL;DR: The epidemiological and clinical characteristics of novel coronavirus (2019-nCoV)-infected pneumonia in Wuhan, China, and hospital-associated transmission as the presumed mechanism of infection for affected health professionals and hospitalized patients are described.
Journal ArticleDOI

Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

TL;DR: Characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia, and further investigation is needed to explore the applicability of the Mu LBSTA scores in predicting the risk of mortality in 2019-nCoV infection.
Journal ArticleDOI

Neutrophil extracellular traps kill bacteria

TL;DR: It is described that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria, which degrade virulence factors and kill bacteria.
Related Papers (5)