scispace - formally typeset
Search or ask a question

Showing papers on "Ferroelectricity published in 2016"


Journal ArticleDOI
15 Jul 2016-Science
TL;DR: The discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit is reported, which may enable the miniaturization of ferroelectric devices.
Abstract: Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit. The ferroelectric transition temperature T c of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.

700 citations


Journal ArticleDOI
TL;DR: The computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.
Abstract: CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.

600 citations


Journal ArticleDOI
TL;DR: Room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K is reported and switchable polarization is observed in thin CIPS of ∼4 nm.
Abstract: Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity. Two dimensional materials are promising for electronic applications, which await the exploration of cooperative phenomena. Here, Liu et al. report switchable ferroelectric polarization in thin CuInP2S6film at room temperature, demonstrating good memory behaviour with on/off ratio of ∼100 based on two-dimensional ferroelectricity.

559 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify the root cause for the increase of the remnant polarization during the wake-up phase and subsequent polarization degradation with further cycling of a hafnium oxide-based ferroelectric random access memory (FeRAM).
Abstract: Novel hafnium oxide (HfO2)-based ferroelectrics reveal full scalability and complementary metal oxide semiconductor integratability compared to perovskite-based ferroelectrics that are currently used in nonvolatile ferroelectric random access memories (FeRAMs). Within the lifetime of the device, two main regimes of wake-up and fatigue can be identified. Up to now, the mechanisms behind these two device stages have not been revealed. Thus, the main scope of this study is an identification of the root cause for the increase of the remnant polarization during the wake-up phase and subsequent polarization degradation with further cycling. Combining the comprehensive ferroelectric switching current experiments, Preisach density analysis, and transmission electron microscopy (TEM) study with compact and Technology Computer Aided Design (TCAD) modeling, it has been found out that during the wake-up of the device no new defects are generated but the existing defects redistribute within the device. Furthermore, vacancy diffusion has been identified as the main cause for the phase transformation and consequent increase of the remnant polarization. Utilizing trap density spectroscopy for examining defect evolution with cycling of the device together with modeling of the degradation results in an understanding of the main mechanisms behind the evolution of the ferroelectric response.

548 citations


Journal ArticleDOI
TL;DR: A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation.
Abstract: The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

464 citations


Journal ArticleDOI
TL;DR: TheFerroelectricity in monolayer group-IV monochalcogenides MX is found to be robust and the corresponding Curie temperatures are higher than room temperature, making them promising for realizing ultrathin ferroelectric devices of broad interest.
Abstract: Ferroelectricity usually fades away as materials are thinned down below a critical value. We reveal that the unique ionic-potential anharmonicity can induce spontaneous in-plane electrical polarization and ferroelectricity in monolayer group-IV monochalcogenides $MX$ ($M=\mathrm{Ge}$, Sn; $X=\mathrm{S}$, Se). An effective Hamiltonian has been successfully extracted from the parametrized energy space, making it possible to study the ferroelectric phase transitions in a single-atom layer. The ferroelectricity in these materials is found to be robust and the corresponding Curie temperatures are higher than room temperature, making them promising for realizing ultrathin ferroelectric devices of broad interest. We further provide the phase diagram and predict other potentially two-dimensional ferroelectric materials.

433 citations


Journal ArticleDOI
TL;DR: This review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferryelectrics.
Abstract: Ferroelectrics are inseparable from symmetry breaking. Accompanying the paraelectric-to-ferroelectric phase transition, the paraelectric phase adopting one of the 32 crystallographic point groups is broken into subgroups belonging to one of the 10 ferroelectric point groups, i.e. C1, C2, C1h, C2v, C4, C4v, C3, C3v, C6 and C6v. The symmetry breaking is captured by the order parameter known as spontaneous polarization, whose switching under an external electric field results in a typical ferroelectric hysteresis loop. In addition, the responses of spontaneous polarization to other external excitations are related to a number of physical effects such as second-harmonic generation, piezoelectricity, pyroelectricity and dielectric properties. Based on these, this review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferroelectrics.

428 citations


Journal Article
TL;DR: In this paper, negative capacitance in a thin epitaxial ferroelectric film was observed to decrease with time, in exactly the opposite direction to which voltage for a regular capacitor should change.
Abstract: The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

385 citations


Journal ArticleDOI
23 Feb 2016-ACS Nano
TL;DR: The monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.
Abstract: 2D semiconducting metal phosphorus trichalcogenides, particularly the bulk crystals of MPS3 (M = Fe, Mn, Ni, Cd and Zn) sulfides and MPSe3 (M = Fe and Mn) selenides, have been synthesized, crystallized and exfoliated into monolayers. The Raman spectra of monolayer FePS3 and 3-layer FePSe3 show the strong intralayer vibrations and structural stability of the atomically thin layers under ambient condition. The band gaps can be adjusted by element choices in the range of 1.3–3.5 eV. The wide-range band gaps suggest their optoelectronic applications in a broad wavelength range. The calculated cleavage energies of MPS3 are smaller than that of graphite. Therefore, the monolayers used for building of heterostructures by van der Waals stacking could be considered as the candidates for artificial 2D materials with unusual ferroelectric and magnetic properties.

372 citations


01 Jul 2016
TL;DR: In this article, the stable in-plane spontaneous polarization in tin telluride (SnTe) down to a 1-unit cell (UC) limit has been found, and the ferroelectric transition temperature T c of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 klvin.
Abstract: Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit. The ferroelectric transition temperature T c of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.

330 citations


Journal ArticleDOI
TL;DR: In situ dynamic X-ray diffraction measurements on P(VDF-TrFE) capacitors find that the piezoelectric effect is dominated by the change in lattice constant but, surprisingly, it cannot be accounted for by the polarization-biased electrostrictive contribution of the crystalline part alone.
Abstract: Piezoelectricity describes interconversion between electrical charge and mechanical strain. As expected for lattice ions displaced in an electric field, the proportionality constant is positive for all piezoelectric materials. The exceptions are poly(vinylidene fluoride) (PVDF) and its copolymers with trifluoroethylene (P(VDF-TrFE)), which exhibit a negative longitudinal piezoelectric coefficient. Reported explanations exclusively consider contraction with applied electric field of either the crystalline or the amorphous part of these semi-crystalline polymers. To distinguish between these conflicting interpretations, we have performed in situ dynamic X-ray diffraction measurements on P(VDF-TrFE) capacitors. We find that the piezoelectric effect is dominated by the change in lattice constant but, surprisingly, it cannot be accounted for by the polarization-biased electrostrictive contribution of the crystalline part alone. Our quantitative analysis shows that an additional contribution is operative, which we argue is due to an electromechanical coupling between the intermixed crystalline lamellae and amorphous regions. Our findings tie the counterintuitive negative piezoelectric response of PVDF and its copolymers to the dynamics of their composite microstructure.

Journal ArticleDOI
23 Jun 2016-Nature
TL;DR: First-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.
Abstract: The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories1. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices2, 3, 4. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative5, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors6. However, experimental demonstrations of this phenomenon remain contentious7. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation8, 9, but the effect of domains on negative capacitance has received little attention5, 10, 11, 12. Here we report negative capacitance in a model system of multidomain ferroelectric–dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

Journal ArticleDOI
TL;DR: 2H-VSe2 monolayer, where the spin–orbit coupling coexists with the intrinsic exchange interaction of transition-metal d electrons, is such a room-temperature ferrovalley material and it is predicted that such system could demonstrate many distinctive properties, for example, chirality-dependent optical band gap and anomalous valley Hall effect.
Abstract: Valleytronics rooted in the valley degree of freedom is of both theoretical and technological importance as it offers additional opportunities for information storage, as well as electronic, magnetic and optical switches. In analogy to ferroelectric materials with spontaneous charge polarization, or ferromagnetic materials with spontaneous spin polarization, here we introduce a new member of ferroic family, that is, a ferrovalley material with spontaneous valley polarization. Combining a two-band k·p model with first-principles calculations, we show that 2H-VSe2 monolayer, where the spin-orbit coupling coexists with the intrinsic exchange interaction of transition-metal d electrons, is such a room-temperature ferrovalley material. We further predict that such system could demonstrate many distinctive properties, for example, chirality-dependent optical band gap and, more interestingly, anomalous valley Hall effect. On account of the latter, functional devices based on ferrovalley materials, such as valley-based nonvolatile random access memory and valley filter, are contemplated for valleytronic applications.

Journal ArticleDOI
22 Sep 2016-Nature
TL;DR: The results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.
Abstract: A single-phase multiferroic material is constructed, in which ferroelectricity and strong magnetic ordering are coupled near room temperature, enabling direct electric-field control of magnetism. Materials that exhibit coupled ferroelectric and magnetic ordering are attractive candidates for use in future memory devices, but such materials are rare and typically exhibit their desirable properties only at low temperatures. Julia Mundy and colleagues now describe and successfully implement a strategy for building artificial layered materials in which ferroelectricity and magnetism are both present, and coupled near room temperature. Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism1,2. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism3. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms4,5,6,7,8,9,10,11,12,13,14,15, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications2. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling16—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

Journal ArticleDOI
TL;DR: In this article, electrical and structural techniques are implemented to unveil how cyclic switching changes nanoscale film structure, which modifies the polarization hysteresis and contributes to the increase in Pr and the opening of the constricted P-V hystereis that are known to occur with wake-up.
Abstract: Since 2011, ferroelectric HfO2 has attracted growing interest in both fundamental and application oriented groups. In this material, noteworthy wake-up and fatigue effects alter the shape of the polarization hysteresis loop during field cycling. Such changes are problematic for application of HfO2 to ferroelectric memories, which require stable polarization hystereses. Herein, electrical and structural techniques are implemented to unveil how cyclic switching changes nanoscale film structure, which modifies the polarization hysteresis. Impedance spectroscopy and scanning transmission electron microscopy identify regions with different dielectric and conductive properties in films at different cycling stages, enabling development of a structural model to explain the wake-up and fatigue phenomena. The wake-up regime arises due to changes in bulk and interfacial structuring: the bulk undergoes a phase transformation from monoclinic to orthorhombic grains, and the interfaces show changes in and diminishment of a nonuniform, defect rich, tetragonal HfO2 layer near the electrodes. The evolution of these aspects of structuring contributes to the increase in Pr and the opening of the constricted P–V hysteresis that are known to occur with wake-up. The onset of the fatigue regime is correlated to an increasing concentration of bulk defects, which are proposed to pin domain walls.

Journal ArticleDOI
TL;DR: By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact and may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.
Abstract: Semiconducting ferroelectricity is realized in hybrid perovskite-type compounds (cyclohexylammonium)2 PbBr4-4 x I4 x (x = 0-1). By adjusting the composition x, the bandgap is successfully tuned from previously reported 3.65 eV to as low as 2.74 eV, and the excellent ferroelectricity was kept intact. This finding may contribute to improving the photoelectronic and/or photovoltaic performance of hybrid perovskite-type compounds.

Journal ArticleDOI
TL;DR: In this paper, the authors predict that two-dimensional (2D) monolayer Group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with strongly coupled giant in-plane spontaneous ferroelectric polarization and spontaneous Ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond.
Abstract: Low-dimensional multiferroic materials hold great promises in miniaturized device applications such as nanoscale transducers, actuators, sensors, photovoltaics, and nonvolatile memories. Here, using first-principles theory we predict that two-dimensional (2D) monolayer Group IV monochalcogenides including GeS, GeSe, SnS, and SnSe are a class of 2D semiconducting multiferroics with strongly coupled giant in-plane spontaneous ferroelectric polarization and spontaneous ferroelastic lattice strain that are thermodynamically stable at room temperature and beyond, and can be effectively modulated by elastic strain engineering. Their optical absorption spectra exhibit strong in-plane anisotropy with visible-spectrum excitonic gaps and sizable exciton binding energies, rendering the unique characteristics of low-dimensional semiconductors. More importantly, the predicted low domain wall energy and small migration barrier together with the coupled multiferroic order and anisotropic electronic structures suggest their great potentials for tunable multiferroic functional devices by manipulating external electrical, mechanical, and optical field to control the internal responses, and enable the development of four device concepts including 2D ferroelectric memory, 2D ferroelastic memory, and 2D ferroelastoelectric nonvolatile photonic memory as well as 2D ferroelectric excitonic photovoltaics.

Journal ArticleDOI
TL;DR: It is shown that a class of molecular compounds-known as plastic crystals-can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules.
Abstract: Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds-known as plastic crystals-can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

Journal ArticleDOI
TL;DR: In this article, the average unit cell volume is seen to increase with increasing DC field and has been interpreted in terms of increasing levels of structural disorder in the system, where the structure becomes ferroelectric with high polarization.
Abstract: Solid-state dielectric energy storage is the most attractive and feasible way to store and release high power energy compared to chemical batteries and electrochemical super-capacitors. However, the low energy density (ca. 1 J cm−3) of commercial dielectric capacitors has limited their development. Dielectric materials showing field induced reversible phase transitions have great potential to break the energy storage density bottleneck. In this work, dense AgNbO3 ceramic samples were prepared successfully using solid state methods. Ferroelectric measurements at different temperatures reveal evidence of two kinds of polar regions. One of these is stable up to 70 °C, while the other remains stable up to 170 °C. The associated transition temperatures are supported by second harmonic generation measurements on poled samples and are correlated with the occurrence of two sharp dielectric responses. The average unit cell volume is seen to increase with increasing DC field and has been interpreted in terms of increasing levels of structural disorder in the system. At a high electric field the structure becomes ferroelectric with high polarization. This field induced transition exhibits a recoverable energy density of 2.1 J cm−3, which represents one of the highest known values for lead-free bulk ceramics.

Journal ArticleDOI
TL;DR: This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferro electric properties including polarization and Curie temperature to conventional ferroElectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes.
Abstract: Ferroelectricity and Curie temperature are demonstrated for epitaxial Y-doped HfO2 film grown on (110) yttrium oxide-stabilized zirconium oxide (YSZ) single crystal using Sn-doped In2O3 (ITO) as bottom electrodes. The XRD measurements for epitaxial film enabled us to investigate its detailed crystal structure including orientations of the film. The ferroelectricity was confirmed by electric displacement filed – electric filed hysteresis measurement, which revealed saturated polarization of 16 μC/cm2. Estimated spontaneous polarization based on the obtained saturation polarization and the crystal structure analysis was 45 μC/cm2. This value is the first experimental estimations of the spontaneous polarization and is in good agreement with the theoretical value from first principle calculation. Curie temperature was also estimated to be about 450 °C. This study strongly suggests that the HfO2-based materials are promising for various ferroelectric applications because of their comparable ferroelectric properties including polarization and Curie temperature to conventional ferroelectric materials together with the reported excellent scalability in thickness and compatibility with practical manufacturing processes.

Journal ArticleDOI
TL;DR: In this article, the wake-up effect in yttrium doped hafnium oxide prepared by chemical solution deposition was investigated and it was shown that not the amount of cycles but the duration of the applied electrical field is essential for the wakeup.
Abstract: The wake-up effect which is observed in ferroelectric hafnium oxide is investigated in yttrium doped hafnium oxide prepared by chemical solution deposition. It can be shown that not the amount of cycles but the duration of the applied electrical field is essential for the wake-up. Temperature dependent wake-up cycling in a range of −160 °C to 100 °C reveals a strong temperature activation of the wake-up, which can be attributed to ion rearrangement during cycling. By using asymmetrical electrodes, resistive valence change mechanism switching can be observed coincident with ferroelectric switching. From the given results, it can be concluded that redistribution of oxygen vacancies is the origin of the wake-up effect.

Journal ArticleDOI
TL;DR: The ferroelectric behavior of ultrathin Hf.5Zr0.5O2 films, with the thickness of just 2.5 nm, is reported, which makes them suitable for use in ferro electric tunnel junctions, thereby further expanding the area of their practical application.
Abstract: Because of their immense scalability and manufacturability potential, the HfO2-based ferroelectric films attract significant attention as strong candidates for application in ferroelectric memories and related electronic devices. Here, we report the ferroelectric behavior of ultrathin Hf0.5Zr0.5O2 films, with the thickness of just 2.5 nm, which makes them suitable for use in ferroelectric tunnel junctions, thereby further expanding the area of their practical application. Transmission electron microscopy and electron diffraction analysis of the films grown on highly doped Si substrates confirms formation of the fully crystalline non-centrosymmetric orthorhombic phase responsible for ferroelectricity in Hf0.5Zr0.5O2. Piezoresponse force microscopy and pulsed switching testing performed on the deposited top TiN electrodes provide further evidence of the ferroelectric behavior of the Hf0.5Zr0.5O2 films. The electronic band lineup at the top TiN/Hf0.5Zr0.5O2 interface and band bending at the adjacent n(+)-Si bottom layer attributed to the polarization charges in Hf0.5Zr0.5O2 have been determined using in situ X-ray photoelectron spectroscopy analysis. The obtained results represent a significant step toward the experimental implementation of Si-based ferroelectric tunnel junctions.

Journal ArticleDOI
TL;DR: The appearance of ferroelectric (FE) and anti-ferroElectric (AFE) properties in HfO2-based thin films is highly intriguing in terms of both the scientific context and practical application in various electronic and energy-related devices.
Abstract: The appearance of ferroelectric (FE) and anti-ferroelectric (AFE) properties in HfO2-based thin films is highly intriguing in terms of both the scientific context and practical application in various electronic and energy-related devices. Interestingly, these materials showed a “wake-up effect”, which refers to the increase in remanent polarization with increasing electric field cycling number before the occurrence of the fatigue effect. In this work, the wake-up effect from Hf0.5Zr0.5O2 was carefully examined by the pulse-switching experiment. In the pristine state, the Hf0.5Zr0.5O2 film mostly showed FE-like behavior with a small contribution from AFE-like distortion, which could be ascribed to the involvement of the AFE phase. The field cycling of only 100 cycles almost completely transformed the AFE phase into the FE phase by depinning the pinned domains. The influence of field cycling on the interfacial layer was also examined through the pulse-switching experiments.

Journal ArticleDOI
TL;DR: Trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules.
Abstract: Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity-the properties that originate from their non-centrosymmetric crystal lattice-but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

Journal ArticleDOI
TL;DR: The crystal structure and ferroelectric properties of ε-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique.
Abstract: The crystal structure and ferroelectric properties of e-Ga2O3 deposited by low-temperature MOCVD on (0001)-sapphire were investigated by single-crystal X-ray diffraction and the dynamic hysteresis measurement technique. A thorough investigation of this relatively unknown polymorph of Ga2O3 showed that it is composed of layers of both octahedrally and tetrahedrally coordinated Ga3+ sites, which appear to be occupied with a 66% probability. The refinement of the crystal structure in the noncentrosymmetric space group P63mc pointed out the presence of uncompensated electrical dipoles suggesting ferroelectric properties, which were finally demonstrated by independent measurements of the ferroelectric hysteresis. A clear epitaxial relation is observed with respect to the c-oriented sapphire substrate, with the Ga2O3 [10–10] direction being parallel to the Al2O3 direction [11–20], yielding a lattice mismatch of about 4.1%.

Journal ArticleDOI
TL;DR: In this article, the authors provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far.

Journal ArticleDOI
TL;DR: The highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.
Abstract: Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 10(5). Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

Journal ArticleDOI
TL;DR: In this article, the effect of the variation of ferroelectric material properties (thickness, polarization, and coercivity) on the performance of negative capacitance FETs was studied.
Abstract: We study the effects of the variation of ferroelectric material properties (thickness, polarization, and coercivity) on the performance of negative capacitance FETs (NCFETs). Based on this, we propose the concept of conservative design of NCFETs, where any unintentional yet reasonable and simultaneous variation ( $\sim \pm 3$ %) in ferroelectric parameters does not result in the emergence of hysteresis and causes only a reasonable variation in the ON-current (≤5%) and, within these constraints, the enhancement of ON-current due to the addition of the ferroelectric gate oxide, which is is maximized.

Journal ArticleDOI
TL;DR: In this paper, the evolution of ferroelectricity in HfO2 thin films through deposition temperature control during atomic layer deposition was systematically examined without the intentional doping of metallic elements other than Hf.
Abstract: HfO2 thin films, extensively studied as high-k gate dielectric layers in metal-oxide-semiconductor field effect transistors, have attracted interest of late due to their newly discovered ferroelectricity in doped HfO2. The appearance of the ferroelectric orthorhombic phase of HfO2 was previously examined in variously doped and undoped systems, but the effects of process-variable changes on the physical and chemical characteristics of a thin film and the resulting ferroelectricity have not been studied systematically. Here, the evolution of ferroelectricity in HfO2 thin films through deposition temperature control during atomic layer deposition was systematically examined without the intentional doping of metallic elements other than Hf. The lower-temperature-deposited HfO2 showed an increased impurity concentration, which was mainly carbon, and the involvement of these impurities suppressed the lateral grain growth during the crystallization thermal treatment. The grain size reduction could stabilize the metastable orthorhombic phase, whose surface and grain boundary energies are lower than those of the room-temperature-stable monoclinic phase, by increasing the grain boundary areas. The 9 nm-thick HfO2 thin film deposited at 220 °C exhibited a remanent polarization value of 10.4 μC cm−2 and endured up to 108 switching cycles, which is a 102-fold improvement compared to the previously reported undoped 6 nm-thick HfO2. This can be ascribed to the decrease in the relative portion of defective interfacial layers by increasing the total film thickness. The strategy of using deposition temperature control is a feasible method for the fabrication of these new lead-free binary ferroelectric thin films.

Journal ArticleDOI
TL;DR: A schematic model for the spatial distribution of mixed phases was suggested for Hf1-xZrxO2 films with various Zr contents based on the experimental observations, and a "variable" polarization as the difference between remanent and saturation polarization was suggested as a new parameter.
Abstract: In this study, the changes in the structural and electrical properties of ferroelectric Hf1-xZrxO2 films with various Zr contents (0.26-0.70) were systematically examined during electric field cycling, resulting in a "wake-up" effect. To quantify the degree of wake-up effect, a "variable" polarization as the difference between remanent and saturation polarization was suggested as a new parameter, which could be calculated by excluding the linear dielectric contribution from the total electric displacement. Here, the variable polarization value could be minimized for an optimized Zr content of 0.43, which was slightly lower than the value for the largest remanent polarization. The polymorphism in Hf1-xZrxO2 thin films is known to be complicated due to the relatively small energy differences between various phases, such as the monoclinic, tetragonal, and orthorhombic phases. The variations in the polarization-electric field characteristics and dielectric constant values could be qualitatively and quantitatively understood based on the competition of various polymorphs that are dependent on the Zr content. Furthermore, a schematic model for the spatial distribution of mixed phases was suggested for Hf1-xZrxO2 films with various Zr contents based on the experimental observations.