scispace - formally typeset
Search or ask a question

Showing papers on "Fetus published in 2019"


Journal ArticleDOI
TL;DR: Information from previous studies is summarized, which may lay the foundation for the diagnosis of pathological pregnancy and put forward new ideas for future studies about dynamic changes in immune cells in mid and late pregnancy.
Abstract: A successful pregnancy requires a fine-tuned and highly regulated balance between immune activation and embryonic antigen tolerance. Since the fetus is semi-allogeneic, the maternal immune system should exert tolerant to the fetus while maintaining the defense against infection. The maternal-fetal interface consists of different immune cells, such as decidual natural killer (dNK) cells, macrophages, T cells, dendritic cells, B cells, and NKT cells. The interaction between immune cells, decidual stromal cells, and trophoblasts constitute a vast network of cellular connections. A cellular immunological imbalance may lead to adverse pregnancy outcomes, such as recurrent spontaneous abortion, pre-eclampsia, pre-term birth, intrauterine growth restriction, and infection. Dynamic changes in immune cells at the maternal-fetal interface have not been clearly stated. While many studies have described changes in the proportions of immune cells in the normal maternal-fetus interface during early pregnancy, few studies have assessed the immune cell changes in mid and late pregnancy. Research on pathological pregnancy has provided clues about these dynamic changes, but a deeper understanding of these changes is necessary. This review summarizes information from previous studies, which may lay the foundation for the diagnosis of pathological pregnancy and put forward new ideas for future studies.

205 citations


Journal ArticleDOI
TL;DR: The results demonstrate that PFASs pass the placenta and deposit to embryo and fetal tissues, calling for risk assessment of gestational exposures.

166 citations


Journal ArticleDOI
12 Dec 2019-eLife
TL;DR: A catalogue of cell types and transcriptional profiles in the human placenta is provided, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Abstract: More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.

151 citations


Journal ArticleDOI
TL;DR: After euploid embryos, mosaic embryos can be considered for transfer, prioritizing those of the single segmental mosaic type, and preference should be given to those made at younger ages.

128 citations


Journal ArticleDOI
TL;DR: Maternal homeostatic mechanisms which protect the placenta and fetus from maternal iron excess are documented, and it is determined that under physiological conditions or in iron deficiency, fetal and placental hepcidin does not regulate fetal iron endowment.
Abstract: Iron deficiency is common worldwide and is associated with adverse pregnancy outcomes. The increasing prevalence of indiscriminate iron supplementation during pregnancy also raises concerns about the potential adverse effects of iron excess. We examined how maternal iron status affects the delivery of iron to the placenta and fetus. Using mouse models, we documented maternal homeostatic mechanisms that protect the placenta and fetus from maternal iron excess. We determined that under physiological conditions or in iron deficiency, fetal and placental hepcidin did not regulate fetal iron endowment. With maternal iron deficiency, critical transporters mediating placental iron uptake (transferrin receptor 1 [TFR1]) and export (ferroportin [FPN]) were strongly regulated. In mice, not only was TFR1 increased, but FPN was surprisingly decreased to preserve placental iron in the face of fetal iron deficiency. In human placentas from pregnancies with mild iron deficiency, TFR1 was increased, but there was no change in FPN. However, induction of more severe iron deficiency in human trophoblast in vitro resulted in the regulation of both TFR1 and FPN, similar to what was observed in the mouse model. This placental adaptation that prioritizes placental iron is mediated by iron regulatory protein 1 (IRP1) and is important for the maintenance of mitochondrial respiration, thus ultimately protecting the fetus from the potentially dire consequences of generalized placental dysfunction.

110 citations


Journal ArticleDOI
TL;DR: The microbiota of human and mouse dyads is studied to understand these relationships, localize bacteria in the fetus, and demonstrate bacterial viability, demonstrating a dynamic, viable mammalian fetal microbiota during in utero development.
Abstract: Previous studies have demonstrated the presence of microbial DNA in the fetal environment. However, it remains unclear whether this DNA represents viable bacteria and how it relates to the maternal microbiota across body sites. We studied the microbiota of human and mouse dyads to understand these relationships, localize bacteria in the fetus, and demonstrate bacterial viability. In human preterm and full-term mother-infant dyads at the time of cesarean delivery, the oral cavity and meconium of newborn infants born as early as 24 weeks of gestation contained a microbiota that was predicted to originate from in utero sources, including the placenta. Using operative deliveries of pregnant mice under highly controlled, sterile conditions in the laboratory, composition, visualization, and viability of bacteria in the in utero compartment and fetal intestine were demonstrated by 16S rRNA gene sequencing, fluorescence in situ hybridization, and bacterial culture. The composition and predicted source of the fetal gut microbiota shifted between mid- and late gestation. Cultivatable bacteria in the fetal intestine were found during mid-gestation but not late gestation. Our results demonstrate a dynamic, viable mammalian fetal microbiota during in utero development.

102 citations


Journal ArticleDOI
Hui-Xia Geng1, Lai Wang1
TL;DR: An understanding of how cadmium exposure contributes to placental and fetal development is necessary for the development of prevention and control strategies for fetal development defects caused by cad mium exposure during pregnancy.

97 citations


Journal ArticleDOI
TL;DR: Findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes.
Abstract: Preterm labor commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. Most research has focused on establishing a causal link between innate immune activation and pathological inflammation leading to preterm labor and birth. However, the role of maternal effector/activated T cells in the pathogenesis of preterm labor/birth is poorly understood. In this study, we first demonstrated that effector memory and activated maternal T cells expressing granzyme B and perforin are enriched at the maternal-fetal interface (decidua) of women with spontaneous preterm labor. Next, using a murine model, we reported that prior to inducing preterm birth, in vivo T cell activation caused maternal hypothermia, bradycardia, systemic inflammation, cervical dilation, intra-amniotic inflammation, and fetal growth restriction, all of which are clinical signs associated with preterm labor. In vivo T cell activation also induced B cell cytokine responses, a proinflammatory macrophage polarization, and other inflammatory responses at the maternal-fetal interface and myometrium in the absence of an increased influx of neutrophils. Finally, we showed that treatment with progesterone can serve as a strategy to prevent preterm labor/birth and adverse neonatal outcomes by attenuating the proinflammatory responses at the maternal-fetal interface and cervix induced by T cell activation. Collectively, these findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes. Such adverse effects can be prevented by treatment with progesterone, a clinically approved strategy.

90 citations


Posted ContentDOI
19 Aug 2019-bioRxiv
TL;DR: A catalogue of cell types and transcriptional profiles in the human placenta is provided, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Abstract: More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell) and with preterm labor (macrophage, monocyte, and activated T-cell). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.

87 citations


Journal ArticleDOI
TL;DR: Evidence is provided that exosomes function as paracrine mediators of labor and delivery as well as otherocrine factors and signals of fetal organ maturation reported determinants of birth timing.
Abstract: Endocrine factors and signals of fetal organ maturation are reported determinants of birth timing. To test the hypothesis that paracrine signaling by exosomes are key regulators of parturition, maternal plasma exosomes from CD-1 mice were isolated and characterized throughout gestation and the biological pathways associated with differentially-expressed cargo proteins were determined. Results indicate that the shape and size of exosomes remained constant throughout gestation; however, a progressive increase in the quantity of exosomes carrying inflammatory mediators was observed from gestation day (E)5 to E19. In addition, the effects of late-gestation (E18) plasma exosomes derived from feto-maternal uterine tissues on parturition was determined. Intraperitoneal injection of E18 exosomes into E15 mice localized in maternal reproductive tract tissues and in intrauterine fetal compartments. Compared to controls that delivered at term, preterm birth occurred in exosome-treated mice on E18 and was preceded by increased inflammatory mediators on E17 in the cervix, uterus, and fetal membranes but not in the placenta. This effect was not observed in mice injected with early-gestation (E9) exosomes. This study provides evidence that exosomes function as paracrine mediators of labor and delivery.

80 citations


Journal ArticleDOI
TL;DR: A causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation is provided and adverse pregnancy and neonatal outcomes can be significantly reduced.
Abstract: Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1β were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.

Journal ArticleDOI
TL;DR: It is indicated that prolonged expression of trophoblast-specific Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.
Abstract: The placenta is an essential organ that is formed during pregnancy and its proper development is critical for embryonic survival. While several animal models have been shown to exhibit some of the pathological effects present in human preeclampsia, these models often do not represent the physiological aspects that have been identified. Hypoxia-inducible factor 1 alpha (Hif-1α) is a necessary component of the cellular oxygen-sensing machinery and has been implicated as a major regulator of trophoblast differentiation. Elevated levels of Hif-1α in the human placenta have been linked to the development of pregnancy-associated disorders, such as preeclampsia and fetal growth restriction. As oxygen regulation is a critical determinant for placentogenesis, we determined the effects of constitutively active Hif-1α, specifically in trophoblasts, on mouse placental development in vivo. Our research indicates that prolonged expression of trophoblast-specific Hif-1α leads to a significant decrease in fetal birth weight. In addition, we noted significant physiological alterations in placental differentiation that included reduced branching morphogenesis, alterations in maternal and fetal blood spaces, and failure to remodel the maternal spiral arteries. These placental alterations resulted in subsequent maternal hypertension with parturitional resolution and maternal kidney glomeruloendotheliosis with accompanying proteinuria, classic hallmarks of preeclampsia. Our findings identify Hif-1α as a critical molecular mediator of placental development and indicate that prolonged expression of Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.


Journal ArticleDOI
TL;DR: The results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring.
Abstract: Key points : Inappropriate intake of key micronutrients in pregnancy is known to alter maternal endocrine status, impair placental development and induce fetal growth restriction. Selenium is an essential micronutrient required for the function of approximately 25 important proteins. However, the specific effects of selenium deficiency during pregnancy on maternal, placental and fetal outcomes are poorly understood. The present study demonstrates that maternal selenium deficiency increases maternal triiodothyronine and tetraiodothyronine concentrations, reduces fetal blood glucose concentrations, and induces fetal growth restriction. Placental expression of key selenium-dependent thyroid hormone converting enzymes were reduced, whereas the expression of key placental nutrient transporters was dysregulated. Selenium deficiency had minimal impact on selenium-dependent anti-oxidants but increased placental copper concentrations and expression of superoxide dismutase 1. These results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring. Abstract : Selenium is a trace element fundamental to diverse homeostatic processes, including anti-oxidant regulation and thyroid hormone metabolism. Selenium deficiency in pregnancy is common and increases the risk of pregnancy complications including fetal growth restriction. Although altered placental formation may contribute to these poor outcomes, the mechanism by which selenium deficiency contributes to complications in pregnancy is poorly understood. Female C57BL/6 mice were randomly allocated to control (>190 µg kg–1, n = 8) or low selenium (<50 µg kg–1, n = 8) diets 4 weeks prior to mating and throughout gestation. Pregnant mice were killed at embryonic day 18.5 followed by collection of maternal and fetal tissue. Maternal and fetal plasma thyroid hormone concentrations were analysed, as was placental expression of key selenoproteins involved in thyroid metabolism and anti-oxidant defences. Selenium deficiency increased plasma tetraiodothyronine and triiodothyronine concentrations. This was associated with a reduction in placental expression of key selenodependent deiodinases, DIO2 and DIO3. Placental expression of selenium-dependent anti-oxidants was unaffected by selenium deficiency. Selenium deficiency reduced fetal glucose concentrations, leading to reduced fetal weight. Placental glycogen content was increased within the placenta, as was Slc2a3 mRNA expression. This is the first study to demonstrate that selenium deficiency may reduce fetal weight through increased maternal thyroid hormone concentrations, impaired placental thyroid hormone metabolism and dysregulated placental nutrient transporter expression. The study suggests that the magnitude of selenium deficiency commonly reported in pregnant women may be sufficient to impair thyroid metabolism but not placental anti-oxidant concentrations.

Journal ArticleDOI
TL;DR: Investigation of the predictive performance of screening for adverse perinatal outcome by the cerebroplacental ratio measured routinely at 35-37 weeks' gestation found that the prediction of these adverse outcomes by maternal demographic characteristics and medical history was only marginally improved by the addition of cerebro Placental Ratio.

Journal ArticleDOI
Xueping Liu1, Dorte Helenius2, Dorte Helenius3, Line Skotte1, Robin N Beaumont4, Matthias Wielscher5, Frank Geller1, Julius Juodakis6, Anubha Mahajan7, Jonathan P. Bradfield, Frederick T.J. Lin8, Suzanne Vogelezang9, Mariona Bustamante10, Tarunveer S. Ahluwalia11, Niina Pitkänen12, Carol A. Wang13, Jonas Bacelis14, Maria Carolina Borges15, Ge Zhang16, Bruce Bedell17, Robert M. Rossi16, Robert M. Rossi18, Kristin Skogstrand2, Kristin Skogstrand1, Shouneng Peng19, Wesley K. Thompson3, Wesley K. Thompson2, Vivek Appadurai2, Vivek Appadurai3, Debbie A Lawlor15, Ilkka Kalliala5, Ilkka Kalliala20, Christine Power21, Mark I. McCarthy22, Heather A. Boyd1, Mary L. Marazita23, Hakon Hakonarson24, M. Geoffrey Hayes8, Denise M. Scholtens8, Fernando Rivadeneira9, Vincent W. V. Jaddoe9, Rebecca K. Vinding11, Hans Bisgaard11, Bridget A. Knight4, Katja Pahkala12, Olli T. Raitakari25, Øyvind Helgeland26, Øyvind Helgeland27, Øyvind Helgeland28, Stefan Johansson26, Stefan Johansson27, Pål R. Njølstad26, Pål R. Njølstad27, João Fadista1, João Fadista29, Andrew J. Schork2, Andrew J. Schork3, Ron Nudel2, Ron Nudel3, Daniel Miller30, Xiaoting Chen30, Matthew T. Weirauch30, Preben Bo Mortensen31, Preben Bo Mortensen2, Anders D. Børglum2, Anders D. Børglum31, Merete Nordentoft11, Merete Nordentoft2, Merete Nordentoft3, Ole Mors2, Ole Mors32, Ke Hao19, Kelli K. Ryckman17, David M. Hougaard1, David M. Hougaard2, Leah C. Kottyan18, Leah C. Kottyan30, Craig E. Pennell13, Leo-Pekka Lyytikäinen33, Klaus Bønnelykke11, Martine Vrijheid10, Janine F. Felix9, William L. Lowe8, Struan F.A. Grant24, Elina Hyppönen21, Elina Hyppönen34, Bo Jacobsson6, Bo Jacobsson28, Marjo-Riitta Järvelin35, Marjo-Riitta Järvelin36, Louis J. Muglia18, Louis J. Muglia17, Louis J. Muglia30, Jeffrey C. Murray17, Rachel M. Freathy15, Thomas Werge2, Thomas Werge3, Thomas Werge11, Mads Melbye37, Mads Melbye1, Mads Melbye11, Alfonso Buil2, Alfonso Buil3, Bjarke Feenstra1 
TL;DR: A fetal genome-wide association meta-analysis is performed and it is found that a locus on chromosome 2q13 is associated with pregnancy duration and further show that the lead SNP rs7594852 changes the binding properties of transcriptional repressor HIC1.
Abstract: The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10-14). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.

Journal ArticleDOI
TL;DR: It is concluded that chronic exposure to e‐cig aerosols containing nicotine during early development can have deleterious health effects on the exposed offspring.

Journal ArticleDOI
TL;DR: A fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies is revealed.
Abstract: Background While the human fetal immune system defaults to a program of tolerance, there is concurrent need for protective immunity to meet the antigenic challenges encountered after birth. Activation of T cells in utero is associated with the fetal inflammatory response with broad implications for the health of the fetus and of the pregnancy. However, the characteristics of the fetal effector T cells that contribute to this process are largely unknown. Methods We analyzed primary human fetal lymphoid and mucosal tissues and performed phenotypic, functional, and transcriptional analysis to identify T cells with pro-inflammatory potential. The frequency and function of fetal-specific effector T cells was assessed in the cord blood of infants with localized and systemic inflammatory pathologies and compared to healthy term controls. Results We identified a transcriptionally distinct population of CD4+ T cells characterized by expression of the transcription factor Promyelocytic Leukemia Zinc Finger (PLZF). PLZF+ CD4+ T cells were specifically enriched in the fetal intestine, possessed an effector memory phenotype, and rapidly produced pro-inflammatory cytokines. Engagement of the C-type lectin CD161 on these cells inhibited TCR-dependent production of IFNγ in a fetal-specific manner. IFNγ-producing PLZF+ CD4+ T cells were enriched in the cord blood of infants with gastroschisis, a natural model of chronic inflammation originating from the intestine, as well as in preterm birth, suggesting these cells contribute to fetal systemic immune activation. Conclusion Our work reveals a fetal-specific program of protective immunity whose dysregulation is associated with fetal and neonatal inflammatory pathologies.

Journal ArticleDOI
TL;DR: The advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy are summarized.
Abstract: The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be responsible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions during pregnancy.

Journal ArticleDOI
TL;DR: Why Zika virus is still a complex and worrisome public health problem with an expanding spectrum of birth defects and how Zika virus and related viruses evade the immune response to injure the fetus is presented.

Journal ArticleDOI
TL;DR: These recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition and suggest that fetal cellsenescence causes inflammatory senescences-associated secretory phenotype (SASP) release.
Abstract: A better understanding of the underlying mechanisms by which signals from the fetus initiate human parturition is required. Our recent findings support the core hypothesis that oxidative stress (OS) and cellular senescence of the fetal membranes (amnion and chorion) trigger human parturition. Fetal membrane cell senescence at term is a natural physiological response to OS that occurs as a result of increased metabolic demands by the maturing fetus. Fetal membrane senescence is affected by the activation of the p38 mitogen activated kinase-mediated pathway. Similarly, various risk factors of preterm labor and premature rupture of the membranes also cause OS-induced senescence. Data suggest that fetal cell senescence causes inflammatory senescence-associated secretory phenotype (SASP) release. Besides SASP, high mobility group box 1 and cell-free fetal telomere fragments translocate from the nucleus to the cytosol in senescent cells, where they represent damage-associated molecular pattern markers (DAMPs). In fetal membranes, both SASPs and DAMPs augment fetal cell senescence and an associated 'sterile' inflammatory reaction. In senescent cells, DAMPs are encapsulated in extracellular vesicles, specifically exosomes, which are 30-150 nm particles, and propagated to distant sites. Exosomes traffic from the fetus to the maternal side and cause labor-associated inflammatory changes in maternal uterine tissues. Thus, fetal membrane senescence and the inflammation generated from this process functions as a paracrine signaling system during parturition. A better understanding of the premature activation of these signals can provide insights into the mechanisms by which fetal signals initiate preterm parturition.

Journal ArticleDOI
TL;DR: Some of the various roles that the innate immune system plays at the maternal–fetal interface are outlined, in terms of their specific cytokine/chemokine/antimicrobial peptide expression profiles throughout pregnancy.
Abstract: During pregnancy, the placenta, the mother and the fetus exploit several mechanisms in order to avoid fetal rejection and to maintain an immunotolerant environment throughout nine months. During this time, immune cells from the fetal and maternal compartments interact to provide an adequate defense in case of an infection and to promote a tolerogenic milieu for the fetus to develop peacefully. Trophoblasts and decidual cells, together with resident natural killer cells, dendritic cells, Hofbauer cells and other macrophages, among other cell types, contribute to the modulation of the uterine environment to sustain a successful pregnancy. In this review, the authors outlined some of the various roles that the innate immune system plays at the maternal–fetal interface. First, the cell populations that are recruited into gestational tissues and their immune mechanisms were examined. In the second part, the Toll–like receptor (TLR)–dependent immune responses at the maternal–fetal interface was summarized, in terms of their specific cytokine/chemokine/antimicrobial peptide expression profiles throughout pregnancy.

Journal ArticleDOI
TL;DR: This work sought to test the hypothesis that maternal obesity would prime both placental macrophages and fetal brain microglia to overrespond to an immune challenge, thus providing a window into microglial function using placental cells.

Journal ArticleDOI
01 Mar 2019-Placenta
TL;DR: Placental immune gene expression was significantly altered by GDM, MIA and the combination of the two (GDM+MIA), which may help explain sexual dimorphism observed in adverse pregnancy outcomes in human offspring exposed to similar stressors.

Journal ArticleDOI
TL;DR: Antibodies against the NR1 (GluN1) subunit of the N‐methyl‐d‐aspartate receptor (NMDAR) are among the most frequently diagnosed anti‐neuronal surface ABs, yet little is known about effects on fetal development during pregnancy.
Abstract: Objective Maternal autoantibodies are a risk factor for impaired brain development in offspring. Antibodies (ABs) against the NR1 (GluN1) subunit of the N-methyl-d-aspartate receptor (NMDAR) are among the most frequently diagnosed anti-neuronal surface ABs, yet little is known about effects on fetal development during pregnancy. Methods We established a murine model of in utero exposure to human recombinant NR1 and isotype-matched nonreactive control ABs. Pregnant C57BL/6J mice were intraperitoneally injected on embryonic days 13 and 17 each with 240μg of human monoclonal ABs. Offspring were investigated for acute and chronic effects on NMDAR function, brain development, and behavior. Results Transferred NR1 ABs enriched in the fetus and bound to synaptic structures in the fetal brain. Density of NMDAR was considerably reduced (up to -49.2%) and electrophysiological properties were altered, reflected by decreased amplitudes of spontaneous excitatory postsynaptic currents in young neonates (-34.4%). NR1 AB-treated animals displayed increased early postnatal mortality (+27.2%), impaired neurodevelopmental reflexes, altered blood pH, and reduced bodyweight. During adolescence and adulthood, animals showed hyperactivity (+27.8% median activity over 14 days), lower anxiety, and impaired sensorimotor gating. NR1 ABs caused long-lasting neuropathological effects also in aged mice (10 months), such as reduced volumes of cerebellum, midbrain, and brainstem. Interpretation The data collectively support a model in which asymptomatic mothers can harbor low-level pathogenic human NR1 ABs that are diaplacentally transferred, causing neurotoxic effects on neonatal development. Thus, AB-mediated network changes may represent a potentially treatable neurodevelopmental congenital brain disorder contributing to lifelong neuropsychiatric morbidity in affected children. ANN NEUROL 2019;86:656-670.

Journal ArticleDOI
TL;DR: The olive baboon is developed as an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs.
Abstract: Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5–7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs.

Journal ArticleDOI
TL;DR: The results indicated that PFOA up to 20 mg/kg exposure adversely affect embryofetal/developmental because for mitochondria dysfunction, and suggested that mitochondrial dysfunction induced by PfoA in liver, heart, and brain lead to developmental toxicity and abnormality in tissues.
Abstract: Perfluorooctanoic acid (PFOA) is an octanoic acid and is found in wildlife and humans. We have investigated mitochondrial toxicity in isolated mitochondria from, placenta, brain, liver, and heart after oral exposure with PFOA in mice during gestational days (7-15). Histopathological examination and mitochondrial toxicity parameters were assayed. Results indicated that PFOA decreased the weight of the fetus and placenta, the length of the fetus and the diameter of the placenta, dead fetuses and dead macerated fetuses in treated mice with 25 mg/kg. Histopathological examination showed that PFOA induced pathological abnormalities in liver, brain, heart, and placenta. Also, PFOA induced mitochondria toxicity in brain, liver, heart of mouse fetus. Our results indicate that PFOA up to 20 mg/kg exposure adversely affect embryofetal/developmental because for mitochondria dysfunction. These results suggested that mitochondrial dysfunction induced by PFOA in liver, heart, and brain lead to developmental toxicity and abnormality in tissues.

Journal ArticleDOI
TL;DR: It is concluded that both placental and oral microbiomes may play a role in periodontitis-associated adverse pregnancy outcomes and the measure to determine the association between periodontal pathogens in the placenta and adverseregnancy outcomes should be the amount and prevalence, not the mere presence of such microorganisms.

Journal ArticleDOI
TL;DR: The use of artificial placenta technology is reported to support, for the first time, extremely preterm ovine fetuses (equivalent to 24 weeks of human gestation) in a stable, growth-normal state for 120 hours.

Journal ArticleDOI
TL;DR: Novel insight is provided into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.
Abstract: Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.