scispace - formally typeset
Search or ask a question

Showing papers on "Secretion published in 2007"


Journal ArticleDOI
TL;DR: There seems to be a differential expression of pro- and antiinflammatory factors with increasing adipocyte size resulting in a shift toward dominance of proinflammatory adipokines largely as a result of a dysregulation of hypertrophic, very large cells.
Abstract: Context: Adipocytes are known to release a variety of factors that may contribute to the proinflammatory state characteristic for obesity. This secretory function is considered to provide the basis for obesity-related complications such as type 2 diabetes and atherosclerosis. Objective: To get a better insight into possible underlying mechanisms, we investigated the effect of adipocyte size on adipokine production and secretion. Design, Patients, and Main Outcome Measures: Protein secretion and mRNA expression in cultured adipocytes separated according to cell size from 30 individuals undergoing elective plastic surgery were investigated. Results: The mean adipocyte volume of the four fractions ranged from 205 ± 146 to 1.077 ± 471 pl. There were strong linear correlations for the secretion of adipokines over time. Secretion of leptin, IL-6, IL-8, TNF-α, monocyte chemoattractant protein-1, interferon-γ-inducible protein 10, macrophage inflammatory protein-1β, granulocyte colony stimulating factor, IL-1ra, ...

1,195 citations


Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: It is shown that lysosomes rapidly fuse with the virulent M. tuberculosis- and M. leprae-containing phagosomes of human monocyte-derived dendritic cells and macrophages, revealing a mechanism for MHC-based antigen presentation that is lacking in current vaccine strains.

870 citations


Journal ArticleDOI
01 Nov 2007-Nature
TL;DR: Functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors are reported, showing that RXLR-EER-encoding genes are transcriptionally upregulated during infection and 425 potential genes encoding secreted RXLR/EER class proteins in the P. infestans genome are identified.
Abstract: Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.

758 citations


Journal ArticleDOI
TL;DR: An increase in ROS levels in ATP-treated macrophages results in activation of a single pathway that promotes both adaptation to subsequent exposure to oxidants or inflammation, and processing and secretion of proinflammatory cytokines.

695 citations


Journal ArticleDOI
TL;DR: Given the unique composition of this secretion system, and its general importance, it is proposed that, in line with the accepted nomenclature, it should be called type VII secretion.
Abstract: Recent evidence shows that mycobacteria have developed novel and specialized secretion systems for the transport of extracellular proteins across their hydrophobic, and highly impermeable, cell wall. Strikingly, mycobacterial genomes encode up to five of these transport systems. Two of these systems, ESX-1 and ESX-5, are involved in virulence - they both affect the cell-to-cell migration of pathogenic mycobacteria. Here, we discuss this novel secretion pathway and consider variants that are present in various Gram-positive bacteria. Given the unique composition of this secretion system, and its general importance, we propose that, in line with the accepted nomenclature, it should be called type VII secretion.

674 citations


Journal ArticleDOI
TL;DR: It is proposed that the VgrG components of the T6SS apparatus may assemble a “cell-puncturing device” analogous to phage tail spikes to deliver effector protein domains through membranes of target host cells.
Abstract: Genes encoding type VI secretion systems (T6SS) are widely distributed in pathogenic Gram-negative bacterial species. In Vibrio cholerae, T6SS have been found to secrete three related proteins extracellularly, VgrG-1, VgrG-2, and VgrG-3. VgrG-1 can covalently cross-link actin in vitro, and this activity was used to demonstrate that V. cholerae can translocate VgrG-1 into macrophages by a T6SS-dependent mechanism. Protein structure search algorithms predict that VgrG-related proteins likely assemble into a trimeric complex that is analogous to that formed by the two trimeric proteins gp27 and gp5 that make up the baseplate “tail spike” of Escherichia coli bacteriophage T4. VgrG-1 was shown to interact with itself, VgrG-2, and VgrG-3, suggesting that such a complex does form. Because the phage tail spike protein complex acts as a membrane-penetrating structure as well as a conduit for the passage of DNA into phage-infected cells, we propose that the VgrG components of the T6SS apparatus may assemble a “cell-puncturing device” analogous to phage tail spikes to deliver effector protein domains through membranes of target host cells.

657 citations


Journal ArticleDOI
26 Oct 2007-Science
TL;DR: It is shown that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain that provokes developmental reprogramming of host cells by mimicking eukaryotic transcription factors.
Abstract: Pathogenicity of many Gram-negative bacteria relies on the injection of effector proteins by type III secretion into eukaryotic cells, where they modulate host signaling pathways to the pathogen's benefit. One such effector protein injected by Xanthomonas into plants is AvrBs3, which localizes to the plant cell nucleus and causes hypertrophy of plant mesophyll cells. We show that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain. AvrBs3 binds to a conserved element in the upa20 promoter via its central repeat region and induces gene expression through its activation domain. Thus, AvrBs3 and likely other members of this family provoke developmental reprogramming of host cells by mimicking eukaryotic transcription factors.

648 citations


Journal ArticleDOI
01 Mar 2007-Nature
TL;DR: It is shown that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity and may be an element in neurodevelopmental disorders.
Abstract: CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.

603 citations


Journal ArticleDOI
TL;DR: In this article, the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii was analyzed and it was found that the same IFN-10(+)IFN-gamma(gamma) population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells.
Abstract: Although interferon gamma (IFN-gamma) secretion is essential for control of most intracellular pathogens, host survival often also depends on the expression of interleukin 10 (IL-10), a cytokine known to counteract IFN-gamma effector functions We analyzed the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii Unexpectedly, IFN-gamma-secreting T-bet(+)Foxp3(-) T helper type 1 (Th1) cells were found to be the major producers of IL-10 in these animals Further analysis revealed that the same IL-10(+)IFN-gamma(gamma) population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells Although at any given time point only a fraction of the cells appeared to simultaneously produce IL-10 and IFN-gamma, IL-10 production could be stimulated in IL-10(-)IFN-gamma(+) cells by further activation in vitro In addition, experiments with T gondii-specific IL-10(+)IFN-gamma(+) CD4 clones revealed that although IFN-gamma expression is imprinted and triggered with similar kinetics regardless of the state of Th1 cell activation, IL-10 secretion is induced more rapidly from recently activated than from resting cells These findings indicate that IL-10 production by CD4(+) T lymphocytes need not involve a distinct regulatory Th cell subset but can be generated in Th1 cells as part of the effector response to intracellular pathogens

597 citations


Journal ArticleDOI
TL;DR: It is shown that glands can regenerate provided that the autonomic innervation remains intact and extended periods of autonomic denervation, liquid diet feeding (reduced reflex stimulation) or duct ligation cause salivary gland atrophy.
Abstract: Oral homeostasis is dependent upon saliva and its content of proteins. Reflex salivary flow occurs at a low 'resting' rate and for short periods of the day more intense taste or chewing stimuli evoke up to ten fold increases in salivation. The secretion of salivary fluid and proteins is controlled by autonomic nerves. All salivary glands are supplied by cholinergic parasympathetic nerves which release acetylcholine that binds to M3 and (to a lesser extent) M1 muscarinic receptors, evoking the secretion of saliva by acinar cells in the endpieces of the salivary gland ductal tree. Most salivary glands also receive a variable innervation from sympathetic nerves which released noradrenaline from which tends to evoke greater release of stored proteins, mostly from acinar cells but also ductal cells. There is some 'cross-talk' between the calcium and cyclic AMP intracellular pathways coupling autonomic stimulation to secretion and salivary protein secretion is augmented during combined stimulation. Other non-adrenergic, non-cholinergic neuropeptides released from autonomic nerves evoke salivary gland secretion and parasympathetically derived vasointestinal peptide, acting through endothelial cell derived nitric oxide, plays a role in the reflex vasodilatation that accompanies secretion. Neuronal type, calcium-activated, soluble nitric oxide within salivary cells appears to play a role in mediating salivary protein secretion in response to autonomimetics. Fluid secretion by salivary glands involves aquaporin 5 and the extent to which the expression of aquaporin 5 on apical acinar cell membranes is upregulated by cholinomimetics remains uncertain. Extended periods of autonomic denervation, liquid diet feeding (reduced reflex stimulation) or duct ligation cause salivary gland atrophy. The latter two are reversible, demonstrating that glands can regenerate provided that the autonomic innervation remains intact. The mechanisms by which nerves integrate with salivary cells during regeneration or during salivary gland development remain to be elucidated.

584 citations


Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: It is shown that the H. pylori CagL protein is a specialized adhesin that is targeted to the pilus surface, where it binds to and activates integrin α5β1 receptor on gastric epithelial cells through an arginine-glycine-aspartate motif.
Abstract: Integrins are important mammalian receptors involved in normal cellular functions as well as pathogenesis of chronic inflammation and cancer. We propose that integrins are exploited by the gastric pathogen and type-1 carcinogen Helicobacter pylori for injection of the bacterial oncoprotein cytotoxin-associated gene A (CagA) into gastric epithelial cells. Virulent H. pylori express a type-IV secretion pilus that injects CagA into the host cell; CagA then becomes tyrosine-phosphorylated by Src family kinases. However, the identity of the host cell receptor involved in this process has remained unknown. Here we show that the H. pylori CagL protein is a specialized adhesin that is targeted to the pilus surface, where it binds to and activates integrin alpha5beta1 receptor on gastric epithelial cells through an arginine-glycine-aspartate motif. This interaction triggers CagA delivery into target cells as well as activation of focal adhesion kinase and Src. Our findings provide insights into the role of integrins in H.-pylori-induced pathogenesis. CagL may be exploited as a new molecular tool for our further understanding of integrin signalling.

Journal ArticleDOI
07 Sep 2007-Cell
TL;DR: An unanticipated role for IKKbeta-dependent NF-kappaB signaling in the negative control of IL-1beta production is unraveled and potential complications of long-term IKK beta inhibition are highlighted.

Journal ArticleDOI
TL;DR: To facilitate patient care and improve outcomes, it is important to understand the T3 SS-mediated virulence processes and to target T3SSs in therapeutic and prophylactic development efforts.
Abstract: Type III secretion systems (T3SSs) are complex bacterial structures that provide gram-negative pathogens with a unique virulence mechanism enabling them to inject bacterial effector proteins directly into the host cell cytoplasm, bypassing the extracellular milieu. Although the effector proteins vary among different T3SS pathogens, common pathogenic mechanisms emerge, including interference with the host cell cytoskeleton to promote attachment and invasion, interference with cellular trafficking processes, cytotoxicity and barrier dysfunction, and immune system subversion. The activity of the T3SSs correlates closely with infection progression and outcome, both in animal models and in human infection. Therefore, to facilitate patient care and improve outcomes, it is important to understand the T3SS-mediated virulence processes and to target T3SSs in therapeutic and prophylactic development efforts.

Journal ArticleDOI
TL;DR: Neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1β secretion from ATP-stimulated murine macrophages, and the findings suggest an alternative model of IL- 1β release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-2β, caspase-1, and other inflammasome components.
Abstract: Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.

Journal ArticleDOI
TL;DR: It is shown that the UVB-mediated enhancement of cytoplasmic Ca(2+) is required for activation of the IL-1beta-converting enzyme caspase-1 by the inflammasome, a multiprotein innate immune complex, which supports the concept that keratinocytes are important immuno-competent cells under physiological and pathological conditions.

Journal ArticleDOI
01 Jul 2007-Diabetes
TL;DR: Findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.
Abstract: One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

Journal ArticleDOI
TL;DR: Understanding this process could help develop mast cell inhibitors of selective mediator release with novel therapeutic applications, as it appears to involve de novo synthesis of mediators, such as interleukin‐6 and vascular endothelial growth factor, with release through secretory vesicles similar to those in synaptic transmission.
Abstract: Mast cells are well known for their involvement in allergic and anaphylactic reactions, during which immunoglobulin E (IgE) receptor (Fc epsilon RI) aggregation leads to exocytosis of the content of secretory granules (1000 nm), commonly known as degranulation, and secretion of multiple mediators. Recent findings implicate mast cells also in inflammatory diseases, such as multiple sclerosis, where mast cells appear to be intact by light microscopy. Mast cells can be activated by bacterial or viral antigens, cytokines, growth factors, and hormones, leading to differential release of distinct mediators without degranulation. This process appears to involve de novo synthesis of mediators, such as interleukin-6 and vascular endothelial growth factor, with release through secretory vesicles (50 nm), similar to those in synaptic transmission. Moreover, the signal transduction steps necessary for this process appear to be largely distinct from those known in Fc epsilon RI-dependent degranulation. How these differential mast cell responses are controlled is still unresolved. No clinically available pharmacological agents can inhibit either degranulation or mast cell mediator release. Understanding this process could help develop mast cell inhibitors of selective mediator release with novel therapeutic applications.

Journal ArticleDOI
TL;DR: It is proposed that the ESX-1 secretion system secretes effectors into the cytosol of infected macrophages, thereby triggering the type I IFN response for the manipulation of host immunity.
Abstract: The ESX-1 secretion system is a major determinant of Mycobacterium tuberculosis virulence, although the pathogenic mechanisms resulting from ESX-1-mediated transport remain unclear. By global transcriptional profiling of tissues from mice infected with either wild-type or ESX-1 mutant bacilli, we found that host genes controlled by ESX-1 in vivo are predominantly IFN regulated. ESX-1-mediated secretion is required for the production of host type I IFNs during infection in vivo and in macrophages in vitro. The macrophage signaling pathway leading to the production of type I IFN required the host kinase TANK-binding kinase 1 and occurs independently of TLR signaling. Importantly, the induction of type I IFNs during M. tuberculosis infection is a pathogenic mechanism as mice lacking the type I IFNR were more restrictive for bacterial growth in the spleen than wild-type mice, although growth in the lung was unaffected. We propose that the ESX-1 secretion system secretes effectors into the cytosol of infected macrophages, thereby triggering the type I IFN response for the manipulation of host immunity.

Journal ArticleDOI
TL;DR: This study identified proteins involved in vesicle formation, the removal of toxic compounds and attacking phage, and the elimination of competing organisms, as well as those involved in facilitating the transfer of genetic material and protein to other bacteria, targeting host cells, and modulating host immune responses.
Abstract: Gram-negative bacteria constitutively secrete native outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress in this area has revealed that OMVs are essential for bacterial survival and pathogenesis, the mechanism of vesicle formation and the biological roles of OMVs have not been clearly defined. Using a proteomics approach, we identified 141 protein components of Escherichia coli-derived native OMVs with high confidence; two separate analyses yielded identifications of 104 and 117 proteins, respectively, with 80 proteins overlapping between the two trials. In the group of identified proteins, the outer membrane proteins were highly enriched, whereas inner membrane proteins were lacking, suggesting that a specific sorting mechanism for vesicular proteins exists. We also identified proteins involved in vesicle formation, the removal of toxic compounds and attacking phage, and the elimination of competing organisms, as well as those involved in facilitating the transfer of genetic material and protein to other bacteria, targeting host cells, and modulating host immune responses. This study provides a global view of native bacterial OMVs. This information will help us not only to elucidate the biogenesis and functions of OMV from nonpathogenic and pathogenic bacteria but also to develop vaccines and antibiotics effective against pathogenic strains.

Journal ArticleDOI
17 May 2007-Nature
TL;DR: The results suggest a pathogenic strategy where the ADP-ribosylation of RNA-binding proteins quells host immunity by affecting RNA metabolism and the plant defence transcriptome.
Abstract: The bacterial plant pathogen Pseudomonas syringae injects effector proteins into host cells through a type III protein secretion system to cause disease. The enzymatic activities of most of P. syringae effectors and their targets remain obscure. Here we show that the type III effector HopU1 is a mono-ADP-ribosyltransferase (ADP-RT). HopU1 suppresses plant innate immunity in a manner dependent on its ADP-RT active site. The HopU1 substrates in Arabidopsis thaliana extracts were RNA-binding proteins that possess RNA-recognition motifs (RRMs). A. thaliana knockout lines defective in the glycine-rich RNA-binding protein GRP7 (also known as AtGRP7), a HopU1 substrate, were more susceptible than wild-type plants to P. syringae. The ADP-ribosylation of GRP7 by HopU1 required two arginines within the RRM, indicating that this modification may interfere with GRP7's ability to bind RNA. Our results suggest a pathogenic strategy where the ADP-ribosylation of RNA-binding proteins quells host immunity by affecting RNA metabolism and the plant defence transcriptome.

Journal ArticleDOI
TL;DR: A role for SREBP-1c in dyslipidaemia and type 2 diabetes has been considered in genetic studies and some association demonstrated, and it could also participate to the hepatic steatosis observed in humans and related to alcohol consumption and hyperhomocysteinaemia.
Abstract: Insulin has long-term effects on glucose and lipid metabolism through its control on the expression of specific genes. In insulin sensitive tissues and particularly in the liver, the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) transduces the insulin signal. SREBP-1c is a transcription factor which is synthetized as a precursor in the membranes of the endoplasmic reticulum and which requires post-translational modification to yield its transcriptionally active nuclear form. Insulin activates the transcription and the proteolytic maturation of SREBP-1c. SREBP-1c induces the expression of a family of genes involved in glucose utilization and fatty acid synthesis and can be considered as a thrifty gene. Since a high lipid availability is deleterious for insulin sensitivity and secretion, a role for SREBP-1c in dyslipidaemia and type 2 diabetes has been considered in genetic studies and some association demonstrated. Finally, SREBP-1c could also participate to the hepatic steatosis observed in humans and related to alcohol consumption and hyperhomocysteinaemia, two pathologies which are concomitant with a stress of the endoplasmic reticulum and an insulin-independent SREBP-1c activation.

Journal ArticleDOI
TL;DR: The possession of a wide range of receptors for the Hsp and Grp family permits binding to a diverse range of cells and the performance of complex multicellular functions particularly in immune cells and neurones.

Journal ArticleDOI
TL;DR: Results indicate that, unlike caspase-1 induced by Toll-like receptor agonists and ATP, activation of the inflammasome by intracellular bacteria and cytosolic flagellin proceeds normally in the absence of P2X7 receptor-mediated cytoplasmic K+ perturbations.

Journal ArticleDOI
TL;DR: The entire EVP cluster is identified as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found.
Abstract: Summary Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram-negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except ΔevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non-secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS-dependent secretion.

Journal ArticleDOI
20 Apr 2007-Cell
TL;DR: How beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis is explained.

Journal ArticleDOI
TL;DR: Several different pathways controlling protein release are investigated including the classic, Golgi-mediated pathway, and it is found that HSP60 is released via exosomes, and that within the exosome, HSP 60 is tightly attached to theExosome membrane.
Abstract: The heat shock proteins (HSP) are a highly conserved family of proteins with critical functions in protein folding, protein trafficking, and cell signaling. These proteins also protect the cell against injury. HSP60 has been found in the extracellular space and has been identified in the plasma of some individuals. HSP60 is thought to be a “danger signal” to the immune system and is also highly immunogenic. Thus extracellular HSP60 is possibly toxic to the cell. The mechanism by which HSP60 is released into the extracellular space is unknown, as is whether it is released by cardiac myocytes. We investigated several different pathways controlling protein release including the classic, Golgi-mediated pathway. We found that HSP60 is released via exosomes, and that within the exosome, HSP60 is tightly attached to the exosome membrane.

Journal ArticleDOI
TL;DR: It is shown that the small GTPase Rab6 marks exocytotic vesicles and, together with the microtubule plus-end-directed motor kinesin-1, stimulates their processive microtubules-based transport to the cell periphery.

Journal Article
TL;DR: In this article, the authors found that CD24 is present in membrane vesicles characterized as exosomes that were isolated from the urine of normal individuals, and showed that exosomal secretion from the embryonic kidney could play a biological role at the fetal-maternal interphase.

Journal ArticleDOI
TL;DR: Recent advances in understanding of the molecular basis of polarized secretion from CTLs and the novel mechanism used by these cells to deliver their lethal hit are focused on.
Abstract: Cytotoxic T lymphocytes (CTLs) play a critical role in the immune system; they are able to recognize and destroy virally infected and tumorigenic cells. Specific recognition of MHC class I–peptide complexes by the T cell receptor (TcR) results in precise delivery of lytic granules to the target cell, sparing neighboring cells and the CTL itself. Over the past 10 years various studies have eludicated the mechanisms that lead to the rapid polarization of the secretory apparatus in CTLs. These studies highlight similarities and differences between polarity and secretory mechanisms seen in other cell types and developmental systems. This review focuses on recent advances in our understanding of the molecular basis of polarized secretion from CTLs and the novel mechanism used by these cells to deliver their lethal hit.

Journal ArticleDOI
TL;DR: Variants of TCF7L2 specifically impair GLP-1-induced insulin secretion, which might explain the impaired insulin secretion in carriers of the risk alleles and confers the increased risk of type 2 diabetes.
Abstract: Aims/hypothesis Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes and reduced insulin secretion. The transcription factor TCF7L2 is an essential factor for glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells. We studied whether a defect in the enteroinsular axis contributes to impaired insulin secretion in carriers of TCF7L2 polymorphisms.