scispace - formally typeset
Search or ask a question

Showing papers on "SOX2 published in 2015"


Journal ArticleDOI
TL;DR: It is shown that MSCs from MM expressed less lncRNA MEG3 relative to those from normal donors during osteogenic differentiation, suggesting that MEG 3 played an essential role in osteogenic differentiate in bone marrow MSC's, partly by activating BMP4 transcription.
Abstract: Multiple myeloma (MM) is characterized by the impaired osteogenic differentiation of mesenchymal stromal cells (MSCs). However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) are emerging as important regulatory molecules in tumor-suppressor and oncogenic pathways. Here we showed that MSCs from MM expressed less lncRNA MEG3 relative to those from normal donors during osteogenic differentiation. To evaluate the effect of MEG3 on osteogenesis, bone marrow MSCs with enhanced or reduced MEG3 were prepared. We observed that MEG3 knockdown significantly reduced the expression of key osteogenic markers, including Runt-related transcription factor 2, osterix, and osteocalcin, while overexpression of MEG3 enhanced their expression. Additionally, MEG3 knockdown decreased BMP4 transcription. Here we showed that MEG3 was critical for SOX2 transcriptional repression of the BMP4. MEG3, which is located near the BMP4 gene, could dissociate the transcription factor SOX2 from the BMP4 promoter. A stable complex containing the MEG3, SOX2, and the SOX2 consensus site of BMP4 suggested that MEG3 activated transcriptional activity by directly influencing SOX2 activity. By using assays such as luciferase, chromatin immunoprecipitation, and RNA immunoprecipitation, we showed that MEG3 had a critical function in a mechanism of promoter-specific transcriptional activation. These results suggested that MEG3 played an essential role in osteogenic differentiation in bone marrow MSCs, partly by activating BMP4 transcription. Our data provided novel evidence for the biological and clinical significance of lncRNA MEG3 expression as a potential biomarker for identifying patients with MM and as a potential therapeutic target in MM.

224 citations


Journal ArticleDOI
TL;DR: The PGE2 signaling pathway might be targeted therapeutically to slow CSC expansion and colorectal cancer progression and correlated with colonic CSC markers in human coloreCTal carcinoma samples.

216 citations


Journal ArticleDOI
TL;DR: It is reported that in these tumours, Sox2 antagonizes the Hippo pathway by direct repression of two Hippo activators, Nf2 (Merlin) and WWC1 (Kibra), leading to exaggerated YAP function, which sharply reduces CSCs and tumorigenicity of osteosarcomas.
Abstract: The repressive Hippo pathway has a profound tumour suppressive role in cancer by restraining the growth-promoting function of the transcriptional coactivator, YAP. We previously showed that the stem cell transcription factor Sox2 maintains cancer stem cells (CSCs) in osteosarcomas. We now report that in these tumours, Sox2 antagonizes the Hippo pathway by direct repression of two Hippo activators, Nf2 (Merlin) and WWC1 (Kibra), leading to exaggerated YAP function. Repression of Nf2, WWC1 and high YAP expression marks the CSC fraction of the tumor population, while the more differentiated fraction has high Nf2, high WWC1 and reduced YAP expression. YAP depletion sharply reduces CSCs and tumorigenicity of osteosarcomas. Thus, Sox2 interferes with the tumour-suppressive Hippo pathway to maintain CSCs in osteosarcomas. This Sox2-Hippo axis is conserved in other Sox2-dependent cancers such as glioblastomas. Disruption of YAP transcriptional activity could be a therapeutic strategy for Sox2-dependent tumours.

210 citations


Journal ArticleDOI
11 Jun 2015-Oncogene
TL;DR: High-VEGF tumors may be most likely to escape anti-angiogenics by upregulating VEGF, driving CSC self-renewal to re-populate post-treatment, and highlights the need to better define V EGF-driven cancer subsets and supports further investigation of combined therapeutic blockade of VEGFR-2 and JAK2/STAT3.
Abstract: Vascular endothelial growth factor-A (VEGF), a potent angiogenic factor, is also implicated in self-renewal in several normal tissue types. VEGF has been shown to drive malignant stem cells but mechanisms thereof and tumor types affected are not fully characterized. Here, we show VEGF promotes breast and lung cancer stem cell (CSC) self-renewal via VEGF receptor-2 (VEGFR-2)/STAT3-mediated upregulation of Myc and Sox2. VEGF increased tumor spheres and aldehyde dehydrogenase activity, both proxies for stem cell function in vitro, in triple-negative breast cancer (TNBC) lines and dissociated primary cancers, and in lung cancer lines. VEGF exposure before injection increased breast cancer-initiating cell abundance in vivo yielding increased orthotopic tumors, and increased metastasis from orthotopic primaries and following tail vein injection without further VEGF treatment. VEGF rapidly stimulated VEGFR-2/JAK2/STAT3 binding and activated STAT3 to bind MYC and SOX2 promoters and induce their expression. VEGFR-2 knockdown or inhibition abrogated VEGF-mediated STAT3 activation, MYC and SOX2 induction and sphere formation. Notably, knockdown of either STAT3, MYC or SOX2 impaired VEGF-upregulation of pSTAT3, MYC and SOX2 expression and sphere formation. Each transcription factor, once upregulated, appears to promote sustained activation of the others, creating a feed-forward loop to drive self-renewal. Thus, in addition to angiogenic effects, VEGF promotes tumor-initiating cell self-renewal through VEGFR-2/STAT3 signaling. Analysis of primary breast and lung cancers (>1300 each) showed high VEGF expression, was prognostic of poor outcome and strongly associated with STAT3 and MYC expression, supporting the link between VEGF and CSC self-renewal. High-VEGF tumors may be most likely to escape anti-angiogenics by upregulating VEGF, driving CSC self-renewal to re-populate post-treatment. Our work highlights the need to better define VEGF-driven cancer subsets and supports further investigation of combined therapeutic blockade of VEGF or VEGFR-2 and JAK2/STAT3.

204 citations


Journal ArticleDOI
TL;DR: Time-resolved progression analysis of the resulting data sets was used to construct a continuous molecular roadmap for three independent reprogramming systems, which varied substantially in Oct4, Sox2, Klf4, and c-Myc stoichiometry.

198 citations


Journal ArticleDOI
TL;DR: Investigation of another iPSC clone, 253G1, established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.
Abstract: Previously, we described the safety and therapeutic potential of neurospheres (NSs) derived from a human induced pluripotent stem cell (iPSC) clone, 201B7, in a spinal cord injury (SCI) mouse model. However, several safety issues concerning iPSC-based cell therapy remain unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplantation. However, long-term observation (for up to 103 days) revealed deteriorated motor function accompanied by tumor formation. The tumors consisted of Nestin+ undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.

174 citations


Journal ArticleDOI
TL;DR: It is demonstrated that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2+/Brachyury+ neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days.
Abstract: Colinear HOX expression during hindbrain and spinal cord development diversifies and assigns regional neural phenotypes to discrete rhombomeric and vertebral domains. Despite the precision of HOX patterning in vivo, in vitro approaches for differentiating human pluripotent stem cells (hPSCs) to posterior neural fates coarsely pattern HOX expression thereby generating cultures broadly specified to hindbrain or spinal cord regions. Here, we demonstrate that successive activation of fibroblast growth factor, Wnt/β-catenin, and growth differentiation factor signaling during hPSC differentiation generates stable, homogenous SOX2+/Brachyury+ neuromesoderm that exhibits progressive, full colinear HOX activation over 7 days. Switching to retinoic acid treatment at any point during this process halts colinear HOX activation and transitions the neuromesoderm into SOX2+/PAX6+ neuroectoderm with predictable, discrete HOX gene/protein profiles that can be further differentiated into region-specific cells, e.g., motor neurons. This fully defined approach significantly expands capabilities to derive regional neural phenotypes from diverse hindbrain and spinal cord domains.

170 citations


Journal ArticleDOI
TL;DR: It is found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function.

168 citations


Journal ArticleDOI
TL;DR: ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets, is described.
Abstract: Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.

166 citations


Journal ArticleDOI
TL;DR: This work found that "dual-sgRNA targeting" is essential for biallelic knockin of FRT sequences to flank the exon and developed a strategy to simultaneously insert an activity-controllable recombinase-expressing cassette and remove the drug-resistance gene, thus speeding up the generation of iKO hPSC lines.

142 citations


Journal ArticleDOI
TL;DR: The data showed that MALAT-1 could increase the proportion of pancreatic CSCs, maintain self-renewing capacity, decrease the chemosensitivity to anticancer drugs, and accelerate tumor angiogenesis in vitro, and the potential effects of MALat-1 on the stem cell-like phenotypes in pancreatic cancer cells were found.
Abstract: Cancer stem cells (CSCs) play a vital role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. The mechanisms that maintain the stemness of these cells remain largely unknown. Our previous study indicated that MALAT-1 may serve as an oncogenic long noncoding RNA in pancreatic cancer by promoting epithelial-mesenchymal transition (EMT) and regulating CSCs markers expression. More significantly, there is emerging evidence that the EMT process may give rise to CSCs, or at least cells with stem cell-like properties. Therefore, we hypothesized that MALAT-1 might enhance stem cell-like phenotypes in pancreatic cancer cells. In this study, our data showed that MALAT-1 could increase the proportion of pancreatic CSCs, maintain self-renewing capacity, decrease the chemosensitivity to anticancer drugs, and accelerate tumor angiogenesis in vitro. In addition, subcutaneous nude mouse xenografts revealed that MALAT-1 could promote tumorigenicity of pancreatic cancer cells in vivo. The underlying mechanisms may involve in increased expression of self-renewal related factors Sox2. Collectively, we for the first time found the potential effects of MALAT-1 on the stem cell-like phenotypes in pancreatic cancer cells, suggesting a novel role of MALAT-1 in tumor stemness, which remains to be fully elucidated.

Journal ArticleDOI
TL;DR: It is demonstrated that SIRT6 functions as a chromatin regulator safeguarding the balance between pluripotency and differentiation through Tet-mediated production of 5hmC.
Abstract: How embryonic stem cells (ESCs) commit to specific cell lineages and yield all cell types of a fully formed organism remains a major question. ESC differentiation is accompanied by large-scale histone and DNA modifications, but the relations between these epigenetic categories are not understood. Here we demonstrate the interplay between the histone deacetylase sirtuin 6 (SIRT6) and the ten-eleven translocation enzymes (TETs). SIRT6 targets acetylated histone H3 at Lys 9 and 56 (H3K9ac and H3K56ac), while TETs convert 5-methylcytosine into 5-hydroxymethylcytosine (5hmC). ESCs derived from Sirt6 knockout (S6KO) mice are skewed towards neuroectoderm development. This phenotype involves derepression of OCT4, SOX2 and NANOG, which causes an upregulation of TET-dependent production of 5hmC. Genome-wide analysis revealed neural genes marked with 5hmC in S6KO ESCs, thereby implicating TET enzymes in the neuroectoderm-skewed differentiation phenotype. We demonstrate that SIRT6 functions as a chromatin regulator safeguarding the balance between pluripotency and differentiation through Tet-mediated production of 5hmC.

Journal ArticleDOI
TL;DR: A novel regulation of stem‐like functions by YAP1, through the modulation of Sox2 expression is demonstrated, which prevents the growth and metastasis of tumor xenografts in mice.
Abstract: Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression.

Journal ArticleDOI
29 Jan 2015-Oncogene
TL;DR: The results show that EphA2 endows invasiveness of GSCs in vivo in cooperation with Akt and regulates glioma stem cell properties.
Abstract: Diffuse infiltrative invasion is a major cause for the dismal prognosis of glioblastoma multiforme (GBM), but the underlying mechanisms remain incompletely understood. Using human glioma stem cells (GSCs) that recapitulate the invasive propensity of primary GBM, we find that EphA2 critically regulates GBM invasion in vivo. EphA2 was expressed in all seven GSC lines examined, and overexpression of EphA2 enhanced intracranial invasion. The effects required Akt-mediated phosphorylation of EphA2 on serine 897. In vitro the Akt-EphA2 signaling axis is maintained in the absence of ephrin-A ligands and is disrupted upon ligand stimulation. To test whether ephrin-As in tumor microenvironment can regulate GSC invasion, the newly established Efna1;Efna3;Efna4 triple knockout mice (TKO) were used in an ex vivo brain slice invasion assay. We observed significantly increased GSC invasion through the brain slices of TKO mice relative to wild-type (WT) littermates. Mechanistically EphA2 knockdown suppressed stem cell properties of GSCs, causing diminished self-renewal, reduced stem marker expression and decreased tumorigenicity. In a subset of GSCs, the reduced stem cell properties were associated with lower Sox2 expression. Overexpression of EphA2 promoted stem cell properties in a kinase-independent manner and increased Sox2 expression. Disruption of Akt-EphA2 cross-talk attenuated stem cell marker expression and neurosphere formation while having minimal effects on tumorigenesis. Taken together, the results show that EphA2 endows invasiveness of GSCs in vivo in cooperation with Akt and regulates glioma stem cell properties.

Journal ArticleDOI
TL;DR: It is proposed that SOX2 sets a permissive epigenetic state in NPCs, thus enabling proper activation of the neuronal differentiation program under neurogenic cue, and regulating the epigenetic landscape of poised genes activated at the onset of neuronal differentiation.
Abstract: Newborn granule neurons generated from neural progenitor cells (NPCs) in the adult hippocampus play a key role in spatial learning and pattern separation. However, the molecular mechanisms that control activation of their neurogenic program remain poorly understood. Here, we report a novel function for the pluripotency factor sex-determining region Y (SRY)-related HMG box 2 (SOX2) in regulating the epigenetic landscape of poised genes activated at the onset of neuronal differentiation. We found that SOX2 binds to bivalently marked promoters of poised proneural genes [neurogenin 2 (Ngn2) and neurogenic differentiation 1 (NeuroD1)] and a subset of neurogenic genes [e.g., SRY-box 21 (Sox21), brain-derived neurotrophic factor (Bdnf), and growth arrest and DNA-damage–inducible, beta (Gadd45b)] where it functions to maintain the bivalent chromatin state by preventing excessive polycomb repressive complex 2 activity. Conditional ablation of SOX2 in adult hippocampal NPCs impaired the activation of proneural and neurogenic genes, resulting in increased neuroblast death and functionally aberrant newborn neurons. We propose that SOX2 sets a permissive epigenetic state in NPCs, thus enabling proper activation of the neuronal differentiation program under neurogenic cue.

Journal ArticleDOI
TL;DR: It is shown that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms.
Abstract: Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

Journal ArticleDOI
Se H.ee Oh1, Ha N.a. Kim1, Hyun Jung Park1, Jin Y.oung Shin1, Phil H.yu Lee1 
TL;DR: It is demonstrated that MSC administration significantly augments hippocampal neurogenesis and enhances the differentiation of NPCs into mature neurons in AD models by augmenting the Wnt signaling pathway.

Journal ArticleDOI
TL;DR: Targeting pluripotency transcription factors, SOX2, OCT4, and Nanog homeobox, demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse, and achieve a cure for these patients.
Abstract: Glioblastoma (GBM) is the most common and fatal type of primary brain tumor. Gliosarcoma (GSM) is a rarer and more aggressive variant of GBM that has recently been considered a potentially different disease. Current clinical treatment for both GBM and GSM includes maximal surgical resection followed by post-operative radiotherapy and concomitant and adjuvant chemotherapy. Despite recent advances in treating other solid tumors, treatment for GBM and GSM still remains palliative, with a very poor prognosis and a median survival rate of 12 to 15 months. Treatment failure is a result of a number of causes, including resistance to radiotherapy and chemotherapy. Recent research has applied the cancer stem cells theory of carcinogenesis to these tumors, suggesting the existence of a small subpopulation of glioma stem cells (GSCs) within these tumors. GSCs are thought to contribute to tumor progression, treatment resistance and tumor recapitulation post-treatment and have become the focus of novel therapy strategies. Their isolation and investigation suggests that GSCs share critical signalling pathways with normal embryonic and somatic stem cells, but with distinct alterations. Research must focus on identifying these variations as they may present novel therapeutic targets. Targeting pluripotency transcription factors SOX2, OCT4 and NANOG demonstrates promising therapeutic potential that if applied in isolation or together with current treatments may improve overall survival, reduce tumor relapse and achieve a cure for these patients.

Journal ArticleDOI
TL;DR: It is found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars, which partially accounts for the different postnatal growth potential of molars and incisors.

Journal ArticleDOI
TL;DR: By modulating Oct4/Sox2 expression, the Lin28B-Let7 pathway not only regulated stemness properties in OSCC but also determined the efficiency by which normal human oral keratinocytes could be reprogrammed to iPSC.
Abstract: Lin28, a key factor for cellular reprogramming and generation of induced pluripotent stem cell (iPSC), makes a critical contribution to tumorigenicity by suppressing Let-7. However, it is unclear whether Lin28 is involved in regulating cancer stem-like cells (CSC), including in oral squamous carcinoma cells (OSCC). In this study, we demonstrate a correlation between high levels of Lin28B, Oct4, and Sox2, and a high percentage of CD44(+)ALDH1(+) CSC in OSCC. Ectopic Lin28B expression in CD44(-)ALDH1(-)/OSCC cells was sufficient to enhance Oct4/Sox2 expression and CSC properties, whereas Let7 co-overexpression effectively reversed these phenomena. We identified ARID3B and HMGA2 as downstream effectors of Lin28B/Let7 signaling in regulating endogenous Oct4 and Sox2 expression. Let7 targeted the 3' untranslated region of ARID3B and HMGA2 and suppressed their expression, whereas ARID3B and HMGA2 increased the transcription of Oct4 and Sox2, respectively, through promoter binding. Chromatin immunoprecipitation assays revealed a direct association between ARID3B and a specific ARID3B-binding sequence in the Oct4 promoter. Notably, by modulating Oct4/Sox2 expression, the Lin28B-Let7 pathway not only regulated stemness properties in OSCC but also determined the efficiency by which normal human oral keratinocytes could be reprogrammed to iPSC. Clinically, a Lin28B(high)-Let7(low) expression pattern was highly correlated with high levels of ARID3B, HMGA2, OCT4, and SOX2 expression in OSCC specimens. Taken together, our results show how Lin28B/Let7 regulates key cancer stem-like properties in oral squamous cancers.

Journal ArticleDOI
TL;DR: Mouse lung alveolar type 1 cells form expansive thin cellular extensions via a non-proliferative two-step process, while retaining cellular plasticity, suggesting that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth.
Abstract: Alveolar type 1 (AT1) cells cover >95% of the gas exchange surface and are extremely thin to facilitate passive gas diffusion. The development of these highly specialized cells and its coordination with the formation of the honeycomb-like alveolar structure are poorly understood. Using new marker-based stereology and single-cell imaging methods, we show that AT1 cells in the mouse lung form expansive thin cellular extensions via a non-proliferative two-step process while retaining cellular plasticity. In the flattening step, AT1 cells undergo molecular specification and remodel cell junctions while remaining connected to their epithelial neighbors. In the folding step, AT1 cells increase in size by more than 10-fold and undergo cellular morphogenesis that matches capillary and secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. Furthermore, AT1 cells are an unexpected source of VEGFA and their normal development is required for alveolar angiogenesis. Notably, a majority of AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results provide evidence that AT1 cells have both structural and signaling roles in alveolar maturation and can exit their terminally differentiated non-proliferative state. Our findings suggest that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth.

Journal ArticleDOI
TL;DR: Mouse embryonic stem cells cultured under serum/LIF conditions are shown to exhibit heterogeneous expression of pluripotency-associated factors that can be overcome by two inhibitors (2i) of the MEK and GSK3 pathways, and 2i conditions rapidly alter the global binding landscape of OCT4, SOX2, and NANOG.

Journal ArticleDOI
TL;DR: It is shown that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs and facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiN SCs through an interaction with SOX2, whereas other combinations or SoX2 alone showed a limited conversion ability.

Journal ArticleDOI
TL;DR: It is demonstrated that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells and is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells.
Abstract: Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.

Journal ArticleDOI
TL;DR: This study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combatNSCLC harboring EGFR mutations.

Journal ArticleDOI
21 May 2015-Nature
TL;DR: The study deconvolutes the first steps in a hierarchical series of events that lead to pluripotency acquisition and finds that early reprogramming-prone cells express a unique set of surface markers, including CD73, CD49d and CD200, that are absent in both fibroblasts and iPS cells.
Abstract: In the context of most induced pluripotent stem (iPS) cell reprogramming methods, heterogeneous populations of non-productive and staggered productive intermediates arise at different reprogramming time points. Despite recent reports claiming substantially increased reprogramming efficiencies using genetically modified donor cells, prospectively isolating distinct reprogramming intermediates remains an important goal to decipher reprogramming mechanisms. Previous attempts to identify surface markers of intermediate cell populations were based on the assumption that, during reprogramming, cells progressively lose donor cell identity and gradually acquire iPS cell properties. Here we report that iPS cell and epithelial markers, such as SSEA1 and EpCAM, respectively, are not predictive of reprogramming during early phases. Instead, in a systematic functional surface marker screen, we find that early reprogramming-prone cells express a unique set of surface markers, including CD73, CD49d and CD200, that are absent in both fibroblasts and iPS cells. Single-cell mass cytometry and prospective isolation show that these distinct intermediates are transient and bridge the gap between donor cell silencing and pluripotency marker acquisition during the early, presumably stochastic, reprogramming phase. Expression profiling reveals early upregulation of the transcriptional regulators Nr0b1 and Etv5 in this reprogramming state, preceding activation of key pluripotency regulators such as Rex1 (also known as Zfp42), Dppa2, Nanog and Sox2. Both factors are required for the generation of the early intermediate state and fully reprogrammed iPS cells, and thus represent some of the earliest known regulators of iPS cell induction. Our study deconvolutes the first steps in a hierarchical series of events that lead to pluripotency acquisition.

Journal ArticleDOI
TL;DR: A flexible lentiviral-based reporter system that allows direct visualization of cancer stem cells based on functional properties and the spatial distribution of CSCs can be assessed in settings that retain microenvironmental and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.
Abstract: Many tumors are hierarchically organized with a minority cell population that has stem-like properties and enhanced ability to initiate tumorigenesis and drive therapeutic relapse. These cancer stem cells (CSCs) are typically identified by complex combinations of cell-surface markers that differ among tumor types. Here, we developed a flexible lentiviral-based reporter system that allows direct visualization of CSCs based on functional properties. The reporter responds to the core stem cell transcription factors OCT4 and SOX2, with further selectivity and kinetic resolution coming from use of a proteasome-targeting degron. Cancer cells marked by this reporter have the expected properties of self-renewal, generation of heterogeneous offspring, high tumor- and metastasis-initiating activity, and resistance to chemotherapeutics. With this approach, the spatial distribution of CSCs can be assessed in settings that retain microenvironmental and structural cues, and CSC plasticity and response to therapeutics can be monitored in real time.

Journal ArticleDOI
TL;DR: The data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state, as well as an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripOTency.
Abstract: Brief expression of pluripotency-associated factors such as Oct4, Klf4, Sox2 and c-Myc (OKSM), in combination with differentiation-inducing signals, has been reported to trigger transdifferentiation of fibroblasts into other cell types. Here we show that OKSM expression in mouse fibroblasts gives rise to both induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) under conditions previously shown to induce only iNSCs. Fibroblast-derived iNSC colonies silenced retroviral transgenes and reactivated silenced X chromosomes, both hallmarks of pluripotent stem cells. Moreover, lineage tracing with an Oct4-CreER labeling system demonstrated that virtually all iNSC colonies originated from cells transiently expressing Oct4, whereas ablation of Oct4(+) cells prevented iNSC formation. Lastly, an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripotency yielded iPSCs and iNSCs carrying the Oct4-CreER-derived lineage label. Together, these data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state.

Journal ArticleDOI
TL;DR: The data show that targeting the tumor microenvironment may assist in blocking tumor progression, and finds that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumormicroenvironment.
Abstract: The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural antitumor compound shikonin (SK) and exosomes derived from mouse preadipocytes are co-cultured with MCF10DCIS cells. We examine how preadipocyte-derived exosomes can regulate early-stage breast cancer via regulating stem cell renewal, cell migration, and tumor formation. We identify a critical miR-140/SOX2/SOX9 axis that regulates differentiation, stemness, and migration in the tumor microenvironment. Next, we find that the natural antitumor compound SK can inhibit preadipocyte signaling inhibiting nearby ductal carcinoma in situ (DCIS) cells. Through co-culture experiments, we find that SK-treated preadipocytes secrete exosomes with high levels of miR-140, which can impact nearby DCIS cells through targeting SOX9 signaling. Finally, we find that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumor microenvironment. Our data also show that targeting the tumor microenvironment may assist in blocking tumor progression.

Journal ArticleDOI
TL;DR: Interestingly, SOX2OT is differentially spliced into multiple mRNA-like transcripts in stem and cancer cells, with an emphasis on its expression signature, its splicing patterns and its critical function in the regulation of SoX2 expression during development and tumorigenesis.
Abstract: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA which harbors one of the major regulators of pluripotency, SOX2 gene, in its intronic region. SOX2OT gene is mapped to human chromosome 3q26.3 (Chr3q26.3) locus and is extended in a high conserved region of over 700 kb. Little is known about the exact role of SOX2OT; however, recent studies have demonstrated a positive role for it in transcription regulation of SOX2 gene. Similar to SOX2, SOX2OT is highly expressed in embryonic stem cells and down-regulated upon the induction of differentiation. SOX2OT is dynamically regulated during the embryogenesis of vertebrates, and delimited to the brain in adult mice and human. Recently, the disregulation of SOX2OT expression and its concomitant expression with SOX2 have become highlighted in some somatic cancers including esophageal squamous cell carcinoma, lung squamous cell carcinoma, and breast cancer. Interestingly, SOX2OT is differentially spliced into multiple mRNA-like transcripts in stem and cancer cells. In this review, we are describing the structural and functional features of SOX2OT, with an emphasis on its expression signature, its splicing patterns and its critical function in the regulation of SOX2 expression during development and tumorigenesis.