scispace - formally typeset
Search or ask a question
Institution

University of Cologne

EducationCologne, Germany
About: University of Cologne is a education organization based out in Cologne, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 32050 authors who have published 66350 publications receiving 2210092 citations. The organization is also known as: Universität zu Köln & Universitatis Coloniensis.
Topics: Population, Gene, Transplantation, Medicine, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: These European Society for Clinical Microbiology and Infectious Diseases and European Confederation of Medical Mycology Joint Clinical Guidelines focus on the diagnosis and management of mucormycosis and strongly recommend continuing treatment until complete response demonstrated on imaging and permanent reversal of predisposing factors.

725 citations

Journal ArticleDOI
TL;DR: It is demonstrated that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury, and ferroptosis mediates postischemic and toxic renal necrosis.
Abstract: Receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is thought to be the pathophysiologically predominant pathway that leads to regulated necrosis of parenchymal cells in ischemia-reperfusion injury (IRI), and loss of either Fas-associated protein with death domain (FADD) or caspase-8 is known to sensitize tissues to undergo spontaneous necroptosis. Here, we demonstrate that renal tubules do not undergo sensitization to necroptosis upon genetic ablation of either FADD or caspase-8 and that the RIPK1 inhibitor necrostatin-1 (Nec-1) does not protect freshly isolated tubules from hypoxic injury. In contrast, iron-dependent ferroptosis directly causes synchronized necrosis of renal tubules, as demonstrated by intravital microscopy in models of IRI and oxalate crystal-induced acute kidney injury. To suppress ferroptosis in vivo, we generated a novel third-generation ferrostatin (termed 16-86), which we demonstrate to be more stable, to metabolism and plasma, and more potent, compared with the first-in-class compound ferrostatin-1 (Fer-1). Even in conditions with extraordinarily severe IRI, 16-86 exerts strong protection to an extent which has not previously allowed survival in any murine setting. In addition, 16-86 further potentiates the strong protective effect on IRI mediated by combination therapy with necrostatins and compounds that inhibit mitochondrial permeability transition. Renal tubules thus represent a tissue that is not sensitized to necroptosis by loss of FADD or caspase-8. Finally, ferroptosis mediates postischemic and toxic renal necrosis, which may be therapeutically targeted by ferrostatins and by combination therapy.

720 citations

Journal ArticleDOI
TL;DR: Analysis of HRS cells micromanipulated from infiltrated tissue sections of 10 primary HD patients for rearranged V genes suggests that the HRS cell precursors reside inside GCs, have acquired crippling mutations that prevent antigenic selection, but escape apoptosis through some transforming event.
Abstract: In Hodgkin's disease (HD), the Hodgkin and Reed-Sternberg (HRS) cells represent only a minute population in the diseased tissue. The investigation of lineage derivation and clonal origin of these cells has yielded conflicting results. We have analyzed HRS cells micromanipulated from infiltrated tissue sections of 10 primary HD patients for rearranged V genes, extending a previous study. Clonally related rearrangements were found in nine cases, indicating that HRS cells represent a dominant clone of B lineage-derived cells in at least a large fraction of cases of HD. Rearranged VH genes from HRS cells carried a high load of somatic mutation, indicating that HRS cells are derived from germinal center (GC) cells or their progeny. Stop codons in some in-frame V gene rearrangements suggest that the HRS cell precursors reside inside GCs, have acquired crippling mutations that prevent antigenic selection, but escape apoptosis through some transforming event.

719 citations

Journal ArticleDOI
14 Jul 1995-Cell
TL;DR: Evidence is presented to show that the insertion of crumbs into the plasma membrane is necessary and sufficient to confer apical character on a membrane domain, and to suggest that crumbs plays a key role in specifying the apical plasma membrane domain of ectodermal epithelial cells of Drosophila.

716 citations

Journal ArticleDOI
Liisa M. Pelttari1, Sofia Khan1, Mikko Vuorela2, Johanna I. Kiiski1, Sara Vilske1, Viivi Nevanlinna1, Salla Ranta1, Johanna Schleutker3, Johanna Schleutker4, Johanna Schleutker5, Robert Winqvist2, Anne Kallioniemi3, Thilo Dörk6, Natalia Bogdanova6, Jonine Figueroa, Paul D.P. Pharoah7, Marjanka K. Schmidt8, Alison M. Dunning7, Montserrat Garcia-Closas9, Manjeet K. Bolla7, Joe Dennis7, Kyriaki Michailidou7, Qin Wang7, John L. Hopper10, Melissa C. Southey10, Efraim H. Rosenberg8, Peter A. Fasching11, Peter A. Fasching12, Matthias W. Beckmann11, Julian Peto13, Isabel dos-Santos-Silva13, Elinor J. Sawyer14, Ian Tomlinson15, Barbara Burwinkel16, Barbara Burwinkel17, Harald Surowy17, Harald Surowy16, Pascal Guénel18, Thérèse Truong18, Stig E. Bojesen19, Stig E. Bojesen20, Børge G. Nordestgaard19, Børge G. Nordestgaard20, Javier Benitez, Anna González-Neira, Susan L. Neuhausen21, Hoda Anton-Culver22, Hermann Brenner16, Volker Arndt16, Alfons Meindl23, Rita K. Schmutzler24, Hiltrud Brauch25, Hiltrud Brauch26, Hiltrud Brauch16, Thomas Brüning27, Annika Lindblom28, Sara Margolin28, Arto Mannermaa29, Jaana M. Hartikainen29, Georgia Chenevix-Trench30, kConFab30, kConFab10, Aocs Investigators31, Laurien Van Dyck31, Hilde Janssen16, Hilde Janssen32, Jenny Chang-Claude16, Anja Rudolph, Paolo Radice, Paolo Peterlongo33, Emily Hallberg33, Janet E. Olson34, Janet E. Olson10, Graham G. Giles34, Graham G. Giles10, Roger L. Milne35, Christopher A. Haiman35, Fredrick Schumacher36, Jacques Simard36, Martine Dumont37, Martine Dumont38, Vessela N. Kristensen37, Vessela N. Kristensen38, Anne Lise Børresen-Dale39, Wei Zheng39, Alicia Beeghly-Fadiel40, Mervi Grip41, Mervi Grip42, Irene L. Andrulis41, Gord Glendon43, Peter Devilee44, Caroline Seynaeve44, Maartje J. Hooning45, Margriet Collée46, Angela Cox46, Simon S. Cross7, Mitul Shah7, Robert Luben16, Ute Hamann47, Ute Hamann16, Diana Torres48, Anna Jakubowska48, Jan Lubinski33, Fergus J. Couch, Drakoulis Yannoukakos9, Nick Orr9, Anthony J. Swerdlow28, Hatef Darabi28, Jingmei Li28, Kamila Czene28, Per Hall7, Douglas F. Easton1, Johanna Mattson1, Carl Blomqvist1, Kristiina Aittomäki1, Heli Nevanlinna 
05 May 2016-PLOS ONE
TL;DR: It is suggested that loss-of-function mutations in RAD 51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.
Abstract: Common variation on 14q24.1, close to RAD51B, has been associated with breast cancer: rs999737 and rs2588809 with the risk of female breast cancer and rs1314913 with the risk of male breast cancer. The aim of this study was to investigate the role of RAD51B variants in breast cancer predisposition, particularly in the context of familial breast cancer in Finland. We sequenced the coding region of RAD51B in 168 Finnish breast cancer patients from the Helsinki region for identification of possible recurrent founder mutations. In addition, we studied the known rs999737, rs2588809, and rs1314913 SNPs and RAD51B haplotypes in 44,791 breast cancer cases and 43,583 controls from 40 studies participating in the Breast Cancer Association Consortium (BCAC) that were genotyped on a custom chip (iCOGS). We identified one putatively pathogenic missense mutation c.541C>T among the Finnish cancer patients and subsequently genotyped the mutation in additional breast cancer cases (n = 5259) and population controls (n = 3586) from Finland and Belarus. No significant association with breast cancer risk was seen in the meta-analysis of the Finnish datasets or in the large BCAC dataset. The association with previously identified risk variants rs999737, rs2588809, and rs1314913 was replicated among all breast cancer cases and also among familial cases in the BCAC dataset. The most significant association was observed for the haplotype carrying the risk-alleles of all the three SNPs both among all cases (odds ratio (OR): 1.15, 95% confidence interval (CI): 1.11-1.19, P = 8.88 x 10-16) and among familial cases (OR: 1.24, 95% CI: 1.16-1.32, P = 6.19 x 10-11), compared to the haplotype with the respective protective alleles. Our results suggest that loss-of-function mutations in RAD51B are rare, but common variation at the RAD51B region is significantly associated with familial breast cancer risk.

715 citations


Authors

Showing all 32558 results

NameH-indexPapersCitations
Julie E. Buring186950132967
Stuart H. Orkin186715112182
Cornelia M. van Duijn1831030146009
Dorret I. Boomsma1761507136353
Frederick W. Alt17157795573
Donald E. Ingber164610100682
Klaus Müllen1642125140748
Klaus Rajewsky15450488793
Frederik Barkhof1541449104982
Stefanie Dimmeler14757481658
Detlef Weigel14251684670
Hidde L. Ploegh13567467437
Luca Valenziano13043794728
Peter Walter12684171580
Peter G. Martin12555397257
Network Information
Related Institutions (5)
Heidelberg University
119.1K papers, 4.6M citations

97% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

Utrecht University
139.3K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023324
2022634
20214,225
20204,052
20193,526
20183,078