scispace - formally typeset
Search or ask a question
Institution

University of Notre Dame

EducationNotre Dame, Indiana, United States
About: University of Notre Dame is a education organization based out in Notre Dame, Indiana, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 22238 authors who have published 55201 publications receiving 2032925 citations. The organization is also known as: University of Notre Dame du Lac & University of Notre Dame, South Bend.


Papers
More filters
Journal ArticleDOI
TL;DR: S semiconductor and metal nanoparticles assembled on reduced graphene oxide sheets offer new ways to design multifunctional catalyst mat and the fundamental understanding of charge-transfer processes is important in the future design of light-harvesting assemblies.
Abstract: The Perspective focuses on photoinduced electron transfer between semiconductor–metal and semiconductor–semiconductor nanostructures and factors that influence the rate of electron transfer at the interface. The storage and discharge properties of metal nanoparticles play an important role in dictating the photocatalytic performance of semiconductor–metal composite assemblies. Both electron and hole transfer across the interface with comparable rates are important in maintaining high photocatalytic efficiency and stability of the semiconductor assemblies. Coupled semiconductors of well-matched band energies are convenient to improve charge separation. Furthermore, semiconductor and metal nanoparticles assembled on reduced graphene oxide sheets offer new ways to design multifunctional catalyst mat. The fundamental understanding of charge-transfer processes is important in the future design of light-harvesting assemblies.

469 citations

Journal ArticleDOI
01 Sep 1989-Virology
TL;DR: The transposable IFP2 element of Trichoplusia ni was originally isolated as a host DNA insertion in spontaneous FP mutants of Galleria mellonella or Autographa californica nuclear polyhedrosis viruses, but is not apparent in DNAs isolated from the TN-R2 cell line or the authors' laboratory colony of T. ni larvae, suggesting IFP1 was recently introduced into the T. Ni genome.

469 citations

Journal ArticleDOI
TL;DR: New and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.
Abstract: Recent advances in the study of tumor-derived microvesicles reveal new insights into the cellular basis of disease progression and the potential to translate this knowledge into innovative approaches for cancer diagnostics and personalized therapy. Tumor-derived microvesicles are heterogeneous membrane-bound sacs that are shed from the surfaces of tumor cells into the extracellular environment. They have been thought to deposit paracrine information and create paths of least resistance, as well as be taken up by cells in the tumor microenvironment to modulate the molecular makeup and behavior of recipient cells. The complexity of their bioactive cargo-which includes proteins, RNA, microRNA, and DNA-suggests multipronged mechanisms by which microvesicles can condition the extracellular milieu to facilitate disease progression. The formation of these shed vesicles likely involves both a redistribution of surface lipids and the vertical trafficking of cargo to sites of microvesicle biogenesis at the cell surface. Current research also suggests that molecular profiling of these structures could unleash their potential as circulating biomarkers as well as platforms for personalized medicine. Thus, new and improved strategies for microvesicle identification, isolation, and capture will have marked implications in point-of-care diagnostics for cancer patients.

468 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2802 moreInstitutions (215)
04 Jun 2015-Nature
TL;DR: In this paper, the branching fractions of the B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) were observed.
Abstract: The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.

467 citations

Journal ArticleDOI
TL;DR: An iterative decoding threshold analysis for terminated regular LDPC convolutional (LDPCC) codes is presented and it is shown that for a terminated LDPCC code ensemble, the thresholds are better than for corresponding regular and irregular LDPC block codes.
Abstract: An iterative decoding threshold analysis for terminated regular LDPC convolutional (LDPCC) codes is presented. Using density evolution techniques, the convergence behavior of an iterative belief propagation decoder is analyzed for the binary erasure channel and the AWGN channel with binary inputs. It is shown that for a terminated LDPCC code ensemble, the thresholds are better than for corresponding regular and irregular LDPC block codes.

467 citations


Authors

Showing all 22586 results

NameH-indexPapersCitations
George Davey Smith2242540248373
David Miller2032573204840
Patrick O. Brown183755200985
Dorret I. Boomsma1761507136353
Chad A. Mirkin1641078134254
Darien Wood1602174136596
Wei Li1581855124748
Timothy C. Beers156934102581
Todd Adams1541866143110
Albert-László Barabási152438200119
T. J. Pearson150895126533
Amartya Sen149689141907
Christopher Hill1441562128098
Tim Adye1431898109010
Teruki Kamon1422034115633
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

90% related

University of Maryland, College Park
155.9K papers, 7.2M citations

89% related

University of Texas at Austin
206.2K papers, 9M citations

89% related

Pennsylvania State University
196.8K papers, 8.3M citations

89% related

Princeton University
146.7K papers, 9.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023115
2022543
20212,777
20202,925
20192,775
20182,624