scispace - formally typeset
Search or ask a question
Institution

University of Oviedo

EducationOviedo, Spain
About: University of Oviedo is a education organization based out in Oviedo, Spain. It is known for research contribution in the topics: Population & Catalysis. The organization has 13423 authors who have published 31649 publications receiving 844799 citations. The organization is also known as: Universidá d'Uviéu & Universidad de Oviedo.


Papers
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, J M Bravo-San Pedro2, Ilio Vitale, Stuart A. Aaronson3, John M. Abrams4, Dieter Adam5, Emad S. Alnemri6, Lucia Altucci7, David W. Andrews8, Margherita Annicchiarico-Petruzzelli, Eric H. Baehrecke9, Nicolas G. Bazan10, Mathieu J.M. Bertrand11, Mathieu J.M. Bertrand12, Katiuscia Bianchi13, Katiuscia Bianchi14, Mikhail V. Blagosklonny15, Klas Blomgren16, Christoph Borner17, Dale E. Bredesen18, Dale E. Bredesen19, Catherine Brenner20, Catherine Brenner21, Michelangelo Campanella22, Eleonora Candi23, Francesco Cecconi23, Francis Ka-Ming Chan9, Navdeep S. Chandel24, Emily H. Cheng25, Jerry E. Chipuk3, John A. Cidlowski26, Aaron Ciechanover27, Ted M. Dawson28, Valina L. Dawson28, V De Laurenzi29, R De Maria, Klaus-Michael Debatin30, N. Di Daniele23, Vishva M. Dixit31, Brian David Dynlacht32, Wafik S. El-Deiry33, Gian Maria Fimia34, Richard A. Flavell35, Simone Fulda36, Carmen Garrido37, Marie-Lise Gougeon38, Douglas R. Green, Hinrich Gronemeyer39, György Hajnóczky6, J M Hardwick28, Michael O. Hengartner40, Hidenori Ichijo41, Bertrand Joseph16, Philipp J. Jost42, Thomas Kaufmann43, Oliver Kepp2, Daniel J. Klionsky44, Richard A. Knight22, Richard A. Knight45, Sharad Kumar46, Sharad Kumar47, John J. Lemasters48, Beth Levine49, Beth Levine50, Andreas Linkermann5, Stuart A. Lipton, Richard A. Lockshin51, Carlos López-Otín52, Enrico Lugli, Frank Madeo53, Walter Malorni54, Jean-Christophe Marine55, Seamus J. Martin56, J-C Martinou57, Jan Paul Medema58, Pascal Meier, Sonia Melino23, Noboru Mizushima41, Ute M. Moll59, Cristina Muñoz-Pinedo, Gabriel Núñez44, Andrew Oberst60, Theocharis Panaretakis16, Josef M. Penninger, Marcus E. Peter24, Mauro Piacentini23, Paolo Pinton61, Jochen H. M. Prehn62, Hamsa Puthalakath63, Gabriel A. Rabinovich64, Kodi S. Ravichandran65, Rosario Rizzuto66, Cecília M. P. Rodrigues67, David C. Rubinsztein68, Thomas Rudel69, Yufang Shi70, Hans-Uwe Simon43, Brent R. Stockwell71, Brent R. Stockwell49, Gyorgy Szabadkai66, Gyorgy Szabadkai22, Stephen W.G. Tait72, H. L. Tang28, Nektarios Tavernarakis73, Nektarios Tavernarakis74, Yoshihide Tsujimoto, T Vanden Berghe12, T Vanden Berghe11, Peter Vandenabeele11, Peter Vandenabeele12, Andreas Villunger75, Erwin F. Wagner76, Henning Walczak22, Eileen White77, W. G. Wood78, Junying Yuan79, Zahra Zakeri80, Boris Zhivotovsky81, Boris Zhivotovsky16, Gerry Melino45, Gerry Melino23, Guido Kroemer1 
Paris Descartes University1, Institut Gustave Roussy2, Mount Sinai Hospital3, University of Texas Southwestern Medical Center4, University of Kiel5, Thomas Jefferson University6, Seconda Università degli Studi di Napoli7, University of Toronto8, University of Massachusetts Medical School9, Louisiana State University10, Ghent University11, Flanders Institute for Biotechnology12, Cancer Research UK13, Queen Mary University of London14, Roswell Park Cancer Institute15, Karolinska Institutet16, University of Freiburg17, University of California, San Francisco18, Buck Institute for Research on Aging19, French Institute of Health and Medical Research20, Université Paris-Saclay21, University College London22, University of Rome Tor Vergata23, Northwestern University24, Memorial Sloan Kettering Cancer Center25, National Institutes of Health26, Technion – Israel Institute of Technology27, Johns Hopkins University28, University of Chieti-Pescara29, University of Ulm30, Genentech31, New York University32, Pennsylvania State University33, University of Salento34, Yale University35, Goethe University Frankfurt36, University of Burgundy37, Pasteur Institute38, University of Strasbourg39, University of Zurich40, University of Tokyo41, Technische Universität München42, University of Bern43, University of Michigan44, Medical Research Council45, University of Adelaide46, University of South Australia47, Medical University of South Carolina48, Howard Hughes Medical Institute49, University of Texas at Dallas50, St. John's University51, University of Oviedo52, University of Graz53, Istituto Superiore di Sanità54, Katholieke Universiteit Leuven55, Trinity College, Dublin56, University of Geneva57, University of Amsterdam58, Stony Brook University59, University of Washington60, University of Ferrara61, Royal College of Surgeons in Ireland62, La Trobe University63, University of Buenos Aires64, University of Virginia65, University of Padua66, University of Lisbon67, University of Cambridge68, University of Würzburg69, Soochow University (Suzhou)70, Columbia University71, University of Glasgow72, Foundation for Research & Technology – Hellas73, University of Crete74, Innsbruck Medical University75, Carlos III Health Institute76, Rutgers University77, University of Minnesota78, Harvard University79, City University of New York80, Moscow State University81
TL;DR: The Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Abstract: Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.

809 citations

Journal ArticleDOI
16 Apr 1999-Science
TL;DR: Neither rods nor cones are required for photoentrainment, and the murine eye contains additional photoreceptors that regulate the circadian clock.
Abstract: Circadian rhythms of mammals are entrained by light to follow the daily solar cycle (photoentrainment). To determine whether retinal rods and cones are required for this response, the effects of light on the regulation of circadian wheel-running behavior were examined in mice lacking these photoreceptors. Mice without cones (cl) or without both rods and cones (rdta/cl) showed unattenuated phase-shifting responses to light. Removal of the eyes abolishes this behavior. Thus, neither rods nor cones are required for photoentrainment, and the murine eye contains additional photoreceptors that regulate the circadian clock.

798 citations

Journal ArticleDOI
TL;DR: Ali, M., Nicieza, A., Wootton, R. J. et al. as discussed by the authors have shown that compensatory growth in fishes is a response to growth depression.
Abstract: Ali, M., Nicieza, A., Wootton, R. J. (2003). Compensatory growth in fishes: a response to growth depression. Fish and Fisheries, 4, (2), 147-190. Sponsorship: Royal Society of London – Chinese Academy of Sciences Exchange award

787 citations

Journal ArticleDOI
29 Mar 2012
TL;DR: In this article, the authors reported results from searches for the standard model Higgs boson in proton-proton collisions at square root(s) = 7 TeV in five decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair.
Abstract: Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 TeV in five Higgs boson decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair. The explored Higgs boson mass range is 110-600 GeV. The analysed data correspond to an integrated luminosity of 4.6-4.8 inverse femtobarns. The expected excluded mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1 sigma, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-600 (110-145) GeV is estimated to be 1.5 sigma (2.1 sigma). More data are required to ascertain the origin of this excess.

786 citations

Journal ArticleDOI
TL;DR: This introductory article will focus on discussion of the essential roles of proteases in cell behavior and survival and death of all organisms, and the large collection of findings demonstrating their relevance in the control of multiple biological processes in all living organisms.

780 citations


Authors

Showing all 13643 results

NameH-indexPapersCitations
Russel J. Reiter1691646121010
Carlo Rovelli1461502103550
J. González-Nuevo144500108318
German Martinez1411476107887
Roland Horisberger1391471100458
Francisco Herrera139100182976
Javier Cuevas1381689103604
Teresa Rodrigo1381831103601
L. Toffolatti13637695529
Elias Campo13576185160
Gabor Istvan Veres135134996104
Francisco Matorras134142894627
Joe Incandela134154993750
Nikhil C. Munshi13490667349
Luca Scodellaro134174198331
Network Information
Related Institutions (5)
Complutense University of Madrid
90.2K papers, 2.1M citations

96% related

University of Valencia
65.6K papers, 1.7M citations

95% related

University of Barcelona
108.5K papers, 3.7M citations

95% related

Autonomous University of Barcelona
80.5K papers, 2.3M citations

94% related

Autonomous University of Madrid
52.8K papers, 1.6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202396
2022268
20211,825
20201,913
20191,806
20181,721