scispace - formally typeset
Open AccessJournal ArticleDOI

GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

B. P. Abbott, +1116 more
- 06 Oct 2017 - 
- Vol. 119, Iss: 14, pp 141101-141101
Reads0
Chats0
TLDR
For the first time, the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network is tested, thus enabling a new class of phenomenological tests of gravity.
Abstract
On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M⊙ and 25.3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 540-210+130  Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160   deg2 using only the two LIGO detectors to 60  deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Journal ArticleDOI

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott, +1198 more
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
References
More filters
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

Binary Black Hole Mergers in the First Advanced LIGO Observing Run

B. P. Abbott, +981 more
- 21 Oct 2016 - 
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Journal ArticleDOI

Evolution of binary black-hole spacetimes.

TL;DR: Early success is described in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event.
Journal ArticleDOI

Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?

TL;DR: This work investigates how accurately the distance to the source and the masses and spins of the two bodies will be measured from the inspiral gravitational wave signals by the three-detector LIGO-VIRGO network using ``advanced detectors'' (those present a few years after initial operation).
Journal ArticleDOI

Accurate Evolutions of Orbiting Black-Hole Binaries without Excision

TL;DR: A new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift is presented and fourth-order convergence of waveforms is shown and the radiated gravitational energy and angular momentum from the plunge is computed.
Related Papers (5)

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more

GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

B. P. Abbott, +1065 more

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more

Advanced Virgo: a second-generation interferometric gravitational wave detector

Fausto Acernese, +233 more