scispace - formally typeset
Journal ArticleDOI

Rate of tree carbon accumulation increases continuously with tree size.

TLDR
A global analysis of 403 tropical and temperate tree species shows that for most species mass growth rate increases continuously with tree size, which means large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees.
Abstract
Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene

TL;DR: In this article, the authors identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively and present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter Droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter Drought, consistent with fundamental physiology; (5) shorter Drought can become lethal under warming, increasing the frequency of lethal Drought; and (6) mortality happens rapidly
Journal ArticleDOI

Plant functional traits have globally consistent effects on competition

TL;DR: Traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies.
Journal ArticleDOI

CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change

Kristina J. Anderson-Teixeira, +119 more
TL;DR: The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
References
More filters
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Journal ArticleDOI

Towards a worldwide wood economics spectrum

TL;DR: It is suggested that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined.
Related Papers (5)