scispace - formally typeset
Search or ask a question

Showing papers on "RNA published in 2005"


Journal ArticleDOI
02 Sep 2005-Science
TL;DR: It is shown that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs, suggesting that miR -122 may present a target for antiviral intervention.
Abstract: MicroRNAs are small RNA molecules that regulate messenger RNA (mRNA) expression. MicroRNA 122 (miR-122) is specifically expressed and highly abundant in the human liver. We show that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs. A genetic interaction between miR-122 and the 5' noncoding region of the viral genome was revealed by mutational analyses of the predicted microRNA binding site and ectopic expression of miR-122 molecules containing compensatory mutations. Studies with replication-defective RNAs suggested that miR-122 did not detectably affect mRNA translation or RNA stability. Therefore, miR-122 is likely to facilitate replication of the viral RNA, suggesting that miR-122 may present a target for antiviral intervention.

2,484 citations


Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: Data support a model in which miRNA-guided formation of a 5' or 3' terminus within pre-ta-siRNA transcripts, followed by RDR6-dependent formation of dsRNA and Dicer-like processing, yields phased ta-siRNAs that negatively regulate other genes.

2,124 citations


Journal ArticleDOI
TL;DR: Online implementations of tRNAscan-SE, snoscan and snoGPS are described that make these RNA detection tools accessible to a wider range of research biologists.
Abstract: Transfer RNAs (tRNAs) and small nucleolar RNAs (snoRNAs) are two of the largest classes of non-protein-coding RNAs. Conventional gene finders that detect protein-coding genes do not find tRNA and snoRNA genes because they lack the codon structure and statistical signatures of protein-coding genes. Previously, we developed tRNAscan-SE, snoscan and snoGPS for the detection of tRNAs, methylation-guide snoRNAs and pseudouridylation-guide snoRNAs, respectively. tRNAscan-SE is routinely applied to completed genomes, resulting in the identification of thousands of tRNA genes. Snoscan has successfully detected methylation-guide snoRNAs in a variety of eukaryotes and archaea, and snoGPS has identified novel pseudouridylation-guide snoRNAs in yeast and mammals. Although these programs have been quite successful at RNA gene detection, their use has been limited by the need to install and configure the software packages on UNIX workstations. Here, we describe online implementations of these RNA detection tools that make these programs accessible to a wider range of research biologists. The tRNAscan-SE, snoscan and snoGPS servers are available at http://lowelab.ucsc.edu/tRNAscan-SE/, http://lowelab.ucsc.edu/snoscan/ and http://lowelab.ucsc.edu/snoGPS/, respectively.

2,000 citations


Journal ArticleDOI
02 Sep 2005-Science
TL;DR: Experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs is presented, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.
Abstract: Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring "genes" in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.

1,702 citations


Journal ArticleDOI
01 Aug 2005-Immunity
TL;DR: It is concluded that nucleoside modifications suppress the potential of RNA to activate DCs, and the innate immune system may detect RNA lacking nucleosides modification as a means of selectively responding to bacteria or necrotic tissue.

1,582 citations


Journal ArticleDOI
02 Sep 2005-Science
TL;DR: It is demonstrated that endogenous let-7 microribonucleoproteins (miRNPs) or the tethering of Argonaute proteins to reporter mRNAs in human cells inhibit translation initiation, suggesting that miRNPs interfere with recognition of the cap.
Abstract: MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNA molecules regulating gene expression in multicellular eukaryotes. In metazoa, miRNAs act by imperfectly base-pairing with the 3' untranslated region of target messenger RNAs (mRNAs) and repressing protein accumulation by an unknown mechanism. We demonstrate that endogenous let-7 microribonucleoproteins (miRNPs) or the tethering of Argonaute (Ago) proteins to reporter mRNAs in human cells inhibit translation initiation. M(7)G-cap-independent translation is not subject to repression, suggesting that miRNPs interfere with recognition of the cap. Repressed mRNAs, Ago proteins, and miRNAs were all found to accumulate in processing bodies. We propose that localization of mRNAs to these structures is a consequence of translational repression.

1,478 citations


Journal ArticleDOI
TL;DR: It is found that clinical isolates of several types of B cell lymphomas, including diffuse large B Cell lymphoma (DLBCL), have 10- to 30-fold higher copy numbers of miR-155 than do normal circulating B cells, and the quantities of BIC RNA are elevated in lymphoma cells, but ratios of the amounts of the two RNAs are not constant, suggesting that the level of mi R-155 is controlled by transcription and processing.
Abstract: We show that the microRNA miR-155 can be processed from sequences present in BIC RNA, a spliced and polyadenylated but non-protein-coding RNA that accumulates in lymphoma cells. The precursor of miR-155 is likely a transient spliced or unspliced nuclear BIC transcript rather than accumulated BIC RNA, which is primarily cytoplasmic. By using a sensitive and quantitative assay, we find that clinical isolates of several types of B cell lymphomas, including diffuse large B cell lymphoma (DLBCL), have 10- to 30-fold higher copy numbers of miR-155 than do normal circulating B cells. Similarly, the quantities of BIC RNA are elevated in lymphoma cells, but ratios of the amounts of the two RNAs are not constant, suggesting that the level of miR-155 is controlled by transcription and processing. Significantly higher levels of miR-155 are present in DLBCLs with an activated B cell phenotype than with the germinal center phenotype. Because patients with activated B cell-type DLBCL have a poorer clinical prognosis, quantification of this microRNA may be diagnostically useful.

1,451 citations


Journal ArticleDOI
01 Jul 2005-Immunity
TL;DR: It is shown by gene targeting that RIG-I is essential for induction of type I interferons (IFNs) after infection with RNA viruses in fibroblasts and conventional dendritic cells (DCs) and exert antiviral responses in a cell type-specific manner.

1,370 citations


Journal ArticleDOI
Alasdair Ivens1, Christopher S. Peacock1, Elizabeth A. Worthey2, Lee Murphy1, Gautam Aggarwal2, Matthew Berriman1, Ellen Sisk2, Marie-Adèle Rajandream1, Ellen Adlem1, Rita Aert3, Atashi Anupama2, Zina Apostolou, Philip Attipoe2, Nathalie Bason1, Christopher Bauser4, Alfred Beck5, Stephen M. Beverley6, Gabriella Bianchettin7, K. Borzym5, G. Bothe4, Carlo V. Bruschi7, Carlo V. Bruschi8, Matt Collins1, Eithon Cadag2, Laura Ciarloni7, Christine Clayton, Richard M.R. Coulson9, Ann Cronin1, Angela K. Cruz10, Robert L. Davies1, Javier G. De Gaudenzi11, Deborah E. Dobson6, Andreas Duesterhoeft, Gholam Fazelina2, Nigel Fosker1, Alberto C.C. Frasch11, Audrey Fraser1, Monika Fuchs, Claudia Gabel, Arlette Goble1, André Goffeau12, David Harris1, Christiane Hertz-Fowler1, Helmut Hilbert, David Horn13, Yiting Huang2, Sven Klages5, Andrew J Knights1, Michael Kube5, Natasha Larke1, Lyudmila Litvin2, Angela Lord1, Tin Louie2, Marco A. Marra, David Masuy12, Keith R. Matthews14, Shulamit Michaeli, Jeremy C. Mottram15, Silke Müller-Auer, Heather Munden2, Siri Nelson2, Halina Norbertczak1, Karen Oliver1, Susan O'Neil1, Martin Pentony2, Thomas M. Pohl4, Claire Price1, Bénédicte Purnelle12, Michael A. Quail1, Ester Rabbinowitsch1, Richard Reinhardt5, Michael A. Rieger, Joel Rinta2, Johan Robben3, Laura Robertson2, Jeronimo C. Ruiz10, Simon Rutter1, David L. Saunders1, Melanie Schäfer, Jacquie Schein, David C. Schwartz16, Kathy Seeger1, Amber Seyler2, Sarah Sharp1, Heesun Shin, Dhileep Sivam2, Rob Squares1, Steve Squares1, Valentina Tosato7, Christy Vogt2, Guido Volckaert3, Rolf Wambutt, T. Warren1, Holger Wedler, John Woodward1, Shiguo Zhou16, Wolfgang Zimmermann, Deborah F. Smith17, Jenefer M. Blackwell18, Kenneth Stuart19, Kenneth Stuart2, Bart Barrell1, Peter J. Myler19, Peter J. Myler2 
15 Jul 2005-Science
TL;DR: The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Tritryp genomes suggest that the mechanisms regulating RNA polymerase II–directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling.
Abstract: Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.

1,357 citations


Journal ArticleDOI
TL;DR: Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-α in serum and activation of T cells and dendritic cells in spleen.
Abstract: Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).

1,310 citations


Journal ArticleDOI
02 Sep 2005-Science
TL;DR: Fifteen years after the discovery of RNA silencing, the authors are only just beginning to understand the depth and complexity of how these RNAs regulate gene expression and to consider their role in shaping the evolutionary history of higher eukaryotes.
Abstract: Small RNA guides--microRNAs, small interfering RNAs, and repeat-associated small interfering RNAs, 21 to 30 nucleotides in length--shape diverse cellular pathways, from chromosome architecture to stem cell maintenance. Fifteen years after the discovery of RNA silencing, we are only just beginning to understand the depth and complexity of how these RNAs regulate gene expression and to consider their role in shaping the evolutionary history of higher eukaryotes.

Journal ArticleDOI
TL;DR: It is reported that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood.
Abstract: Short interfering RNAs (siRNAs) that mediate specific gene silencing through RNA interference (RNAi) are widely used to study gene function and are also being developed for therapeutic applications. Many nucleic acids, including double- (dsRNA) and single-stranded RNA (ssRNA), can stimulate innate cytokine responses in mammals. Despite this, few studies have questioned whether siRNA may have a similar effect on the immune system. This could significantly influence the in vivo application of siRNA owing to off-target effects and toxicities associated with immune stimulation. Here we report that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood. The immunostimulatory activity of formulated siRNAs and the associated toxicities are dependent on the nucleotide sequence. We have identified putative immunostimulatory motifs that have allowed the design of siRNAs that can mediate RNAi but induce minimal immune activation.

Journal ArticleDOI
06 Jan 2005-Nature
TL;DR: The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.
Abstract: The nucleolus is a key organelle that coordinates the synthesis and assembly of ribosomal subunits and forms in the nucleus around the repeated ribosomal gene clusters. Because the production of ribosomes is a major metabolic activity, the function of the nucleolus is tightly linked to cell growth and proliferation, and recent data suggest that the nucleolus also plays an important role in cell-cycle regulation, senescence and stress responses. Here, using mass-spectrometry-based organellar proteomics and stable isotope labelling, we perform a quantitative analysis of the proteome of human nucleoli. In vivo fluorescent imaging techniques are directly compared to endogenous protein changes measured by proteomics. We characterize the flux of 489 endogenous nucleolar proteins in response to three different metabolic inhibitors that each affect nucleolar morphology. Proteins that are stably associated, such as RNA polymerase I subunits and small nuclear ribonucleoprotein particle complexes, exit from or accumulate in the nucleolus with similar kinetics, whereas protein components of the large and small ribosomal subunits leave the nucleolus with markedly different kinetics. The data establish a quantitative proteomic approach for the temporal characterization of protein flux through cellular organelles and demonstrate that the nucleolar proteome changes significantly over time in response to changes in cellular growth conditions.

Journal ArticleDOI
TL;DR: It is shown that AGO1 selectively recruits certain classes of short silencing-related RNA, and it is predicted that other Arabidopsis AGOs might have a similar catalytic activity but recruit different subsets of siRNAs or miRNAs.
Abstract: ARGONAUTE (AGO) RNA-binding proteins are involved in RNA silencing. They bind to short interfering RNAs (siRNAs) and microRNAs (miRNAs) through a conserved PAZ domain, and, in animals, they assemble into a multisubunit RNA-induced silencing complex (RISC). The mammalian AGO2, termed Slicer, directs siRNA- and miRNA-mediated cleavage of a target RNA. In Arabidopsis, there are 10 members of the AGO family, and the AGO1 protein is potentially the Slicer component in different RNA-silencing pathways. Here, we show that AGO1 selectively recruits certain classes of short silencing-related RNA. AGO1 is physically associated with miRNAs, transacting siRNAs, and transgene-derived siRNAs but excludes virus-derived siRNAs and 24-nt siRNAs involved in chromatin silencing. We also show that AGO1 has Slicer activity. It mediates the in vitro cleavage of a mir165 target RNA in a manner that depends on the sequence identity of amino acid residues in the PIWI domain that are predicted by homology with animal Slicer-competent AGO proteins to constitute the RNase catalytic center. However, unlike animals, we find no evidence that AGO1 Slicer is in a high molecular weight RNA-induced silencing complex. The Slicer activity fractionates as a complex of approximately 150 kDa that likely constitutes the AGO1 protein and associated RNA without any other proteins. Based on sequence similarity, we predict that other Arabidopsis AGOs might have a similar catalytic activity but recruit different subsets of siRNAs or miRNAs.

Journal ArticleDOI
TL;DR: The current understanding of how small RNAs are produced, how they are loaded into protein complexes, and how they repress gene expression is reviewed.
Abstract: RNA silencing pathways convert the sequence information in long RNA, typically double-stranded RNA, into ∼21-nt RNA signaling molecules such as small interfering RNAs (siRNAs) and microRNAs (miRNAs). siRNAs and miRNAs provide specificity to protein effector complexes that repress mRNA transcription or translation, or catalyze mRNA destruction. Here, we review our current understanding of how small RNAs are produced, how they are loaded into protein complexes, and how they repress gene expression.

Journal ArticleDOI
TL;DR: Based on the comparison of more than 40 structures including 15 complexes, the structure–function relationships of the RNA recognition motif (RRM) are reviewed and the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins are identified.
Abstract: The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM–RNA or RRM–protein), we reviewed the structure–function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM–nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM β-sheet, the two external β-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein–RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.

Journal ArticleDOI
TL;DR: It is shown that mammalian DNA and RNA, in the form of ICs, are potent self-antigens for TLR9 and TLR7, respectively, and induce IFN-α production by PDCs, suggesting that TLRs may have a critical role in the promotion of lupus through the induction of IFn-α by P DCs.
Abstract: Raised serum levels of interferon (IFN)- � have been observed in systemic lupus erythematosus (SLE) patients, and these levels are correlated with both disease activity and severity. The origin of this IFN- � is still unclear, but increasing evidence suggests the critical involvement of activated plasmacytoid predendritic cells (PDCs). In SLE patients, DNA and RNA viruses, as well as immune complexes (ICs), that consist of autoantibodies specific to self-DNA and RNA protein particles can stimulate production of IFN- � . We have developed three series of oligonucleotide (ODN)-based inhibitors of Toll-like receptor (TLR) signaling. These ODNs include inhibitors of TLR9, inhibitors of TLR7 but not TLR9, and sequences that inhibit both TLR7 and TLR9. Specificity of these inhibitors is confirmed by inhibition of IFN- � production by PDCs in response to DNA or RNA viruses. We show that mammalian DNA and RNA, in the form of ICs, are potent self-antigens for TLR9 and TLR7, respectively, and induce IFN- � production by PDCs. This work suggests that TLRs may have a critical role in the promotion of lupus through the induction of IFN- � by PDCs. These inhibitors of TLR signaling thus represent novel therapeutic agents with potential for the treatment of lupus.

Journal ArticleDOI
TL;DR: It is shown that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing Interferon in cultured cells, and RIG-I is a pathogen receptor that regulates cellular permissiveness to HCV replication and may play a key role inInterferon-based therapies for the treatment of HCV infection.
Abstract: Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection.

Journal ArticleDOI
03 Jun 2005-Cell
TL;DR: In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates, suggesting that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.

Journal ArticleDOI
24 Nov 2005-Nature
TL;DR: It is concluded that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA, and the force–velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations is determined.
Abstract: During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with angstrom-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7 ± 0.6 A, a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force–velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site. In a paper building on over a decade of progress in single molecule biophysics, Abbondanzieri et al. report the first experiments capable of resolving base-pair steps for an individual enzyme moving along DNA. The enzyme is RNA polymerase, captured by an all-optical force clamp in the act of transcribing RNA from a DNA template. The ability to detect Angstrom-scale motions in a single enzyme opens up new areas of study of biomolecules including perhaps single-molecule DNA sequencing.

Journal ArticleDOI
TL;DR: These studies have not only highlighted the basic understanding of host–parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Abstract: In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.

Journal ArticleDOI
18 Nov 2005-Cell
TL;DR: It is shown that both strands of siRNA get loaded onto Ago2 protein in Drosophila S2 cell extracts and this cleavage event is important for the removal of the anti-guide strand from Ago2protein and activation of RISC.

Journal ArticleDOI
TL;DR: It is shown that individual as well as joint infection by RSV and PIV can be specifically prevented and inhibited by short interfering RNAs (siRNAs), instilled intranasally in the mouse, with or without transfection reagents.
Abstract: Respiratory syncytial virus (RSV) and parainfluenza virus (PIV) are two respiratory pathogens of paramount medical significance that exert high mortality. At present, there is no reliable vaccine or antiviral drug against either virus. Using an RNA interference (RNAi) approach, we show that individual as well as joint infection by RSV and PIV can be specifically prevented and inhibited by short interfering RNAs (siRNAs), instilled intranasally in the mouse, with or without transfection reagents. The degree of protection matched the antiviral activity of the siRNA in cell culture, allowing an avenue for quick screening of an efficacious siRNA. When targeting both viruses in a joint infection, excess of one siRNA moderated the inhibitory effect of the other, suggesting competition for the RNAi machinery. Our results suggest that, if properly designed, low dosages of inhaled siRNA might offer a fast, potent and easily administrable antiviral regimen against respiratory viral diseases in humans.

Journal ArticleDOI
TL;DR: A quantitative approach involving Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) to map the structure of and to distinguish fine differences in structure for tRNAAsp transcripts at single nucleotide resolution is developed.
Abstract: The reactivity of an RNA ribose hydroxyl is shown to be exquisitely sensitive to local nucleotide flexibility because a conformationally constrained adjacent 3'-phosphodiester inhibits formation of the deprotonated, nucleophilic oxyanion form of the 2'-hydroxyl group. Reaction with an appropriate electrophile, N-methylisatoic anhydride, to form a 2'-O-adduct thus can be used to monitor local structure at every nucleotide in an RNA. We develop a quantitative approach involving Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) to map the structure of and to distinguish fine differences in structure for tRNA Asp transcripts at single nucleotide resolution. Modest extensions of the SHAPE approach will allow RNA structure to be monitored comprehensively and at single nucleotide resolution for RNAs of arbitrary sequence and structural complexity and under diverse solution environments.

Journal ArticleDOI
TL;DR: It is argued that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.
Abstract: Infection of human cells with poliovirus induces the proliferation of double-membraned cytoplasmic vesicles whose surfaces are used as the sites of viral RNA replication and whose origin is unknown. Here, we show that several hallmarks of cellular autophagosomes can be identified in poliovirus-induced vesicles, including colocalization of LAMP1 and LC3, the human homolog of Saccharomyces cerevisiae Atg8p, and staining with the fluorophore monodansylcadaverine followed by fixation. Colocalization of LC3 and LAMP1 was observed early in the poliovirus replicative cycle, in cells infected with rhinoviruses 2 and 14, and in cells that express poliovirus proteins 2BC and 3A, known to be sufficient to induce double-membraned vesicles. Stimulation of autophagy increased poliovirus yield, and inhibition of the autophagosomal pathway by 3-methyladenine or by RNA interference against mRNAs that encode two different proteins known to be required for autophagy decreased poliovirus yield. We propose that, for poliovirus and rhinovirus, components of the cellular machinery of autophagosome formation are subverted to promote viral replication. Although autophagy can serve in the innate immune response to microorganisms, our findings are inconsistent with a role for the induced autophagosome-like structures in clearance of poliovirus. Instead, we argue that these double-membraned structures provide membranous supports for viral RNA replication complexes, possibly enabling the nonlytic release of cytoplasmic contents, including progeny virions, from infected cells.

Journal ArticleDOI
TL;DR: Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression and form highly specific binding pockets for the target metabolite.
Abstract: Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression. Like their protein counterparts, these RNA gene control elements form highly specific binding pockets for the target metabolite and undergo allosteric changes in structure. Numerous classes of riboswitches are present in bacteria and they comprise a common and robust metabolite-sensing system.

Journal ArticleDOI
02 Sep 2005-Science
TL;DR: An ncRNA repressor of the nuclear factor of activated T cells (NFAT), which interacts with multiple proteins including members of the importin-beta superfamily and likely functions as a specific regulator of NFAT nuclear trafficking is identified.
Abstract: Noncoding RNA molecules (ncRNAs) have been implicated in numerous biological processes including transcriptional regulation and the modulation of protein function. Yet, in spite of the apparent abundance of ncRNA, little is known about the biological role of the projected thousands of ncRNA genes present in the human genome. To facilitate functional analysis of these RNAs, we have created an arrayed library of short hairpin RNAs (shRNAs) directed against 512 evolutionarily conserved putative ncRNAs and, via cell-based assays, we have begun to determine their roles in cellular pathways. Using this system, we have identified an ncRNA repressor of the nuclear factor of activated T cells (NFAT), which interacts with multiple proteins including members of the importin-beta superfamily and likely functions as a specific regulator of NFAT nuclear trafficking.

Journal ArticleDOI
TL;DR: All of the known noncoding RNAs and cis-acting elements with high significance are recovered and compelling evidence for many other conserved RNA secondary structures not described so far to the authors' knowledge is found.
Abstract: We report an efficient method for detecting functional RNAs. The approach, which combines comparative sequence analysis and structure prediction, already has yielded excellent results for a small number of aligned sequences and is suitable for large-scale genomic screens. It consists of two basic components: (i) a measure for RNA secondary structure conservation based on computing a consensus secondary structure, and (ii) a measure for thermodynamic stability, which, in the spirit of a z score, is normalized with respect to both sequence length and base composition but can be calculated without sampling from shuffled sequences. Functional RNA secondary structures can be identified in multiple sequence alignments with high sensitivity and high specificity. We demonstrate that this approach is not only much more accurate than previous methods but also significantly faster. The method is implemented in the program rnaz, which can be downloaded from www.tbi.univie.ac.at/~wash/RNAz. We screened all alignments of length n ≥ 50 in the Comparative Regulatory Genomics database, which compiles conserved noncoding elements in upstream regions of orthologous genes from human, mouse, rat, Fugu, and zebrafish. We recovered all of the known noncoding RNAs and cis-acting elements with high significance and found compelling evidence for many other conserved RNA secondary structures not described so far to our knowledge.

Journal ArticleDOI
21 Oct 2005-Cell
TL;DR: A role of the cell nucleus in harboring RNA molecules that are not immediately needed to produce proteins but whose cytoplasmic presence is rapidly required upon physiologic stress is revealed.

Journal ArticleDOI
12 Aug 2005-Cell
TL;DR: It is shown that in vivo depletion of ASF/SF2 results in a hypermutation phenotype likely due to DNA rearrangements, reflected in the rapid appearance of DNA double-strand breaks and high-molecular-weight DNA fragments, and this results support a model by which recruitment of ASFs to nascent transcripts by RNA polymerase II prevents formation of mutagenic R loop structures.