scispace - formally typeset
Search or ask a question

Showing papers on "Transcription factor published in 2008"


Journal ArticleDOI
08 Feb 2008-Cell
TL;DR: The authors synthesize some of the basic principles that have emerged from studies of NF-kappaB, and aim to generate a more unified view of the regulation of the transcription factor.

3,996 citations


Journal ArticleDOI
13 Jun 2008-Cell
TL;DR: This study uses chromatin immunoprecipitation coupled with ultra-high-throughput DNA sequencing to map the locations of TF-binding sites and identifies important features of the transcriptional regulatory networks that define ES-cell identity.

2,519 citations


Journal ArticleDOI
TL;DR: Recent advances in the understanding of the diverse biological actions of PPARgamma are reviewed with an eye toward the expanding therapeutic potential of PPargamma agonist drugs.
Abstract: The nuclear receptor PPARgamma is a ligand-activated transcription factor that plays an important role in the control of gene expression linked to a variety of physiological processes. PPARgamma was initially characterized as the master regulator for the development of adipose cells. Ligands for PPARgamma include naturally occurring fatty acids and the thiazolidinedione (TZD) class of antidiabetic drugs. Activation of PPARgamma improves insulin sensitivity in rodents and humans through a combination of metabolic actions, including partitioning of lipid stores and the regulation of metabolic and inflammatory mediators termed adipokines. PPARgamma signaling has also been implicated in the control of cell proliferation, atherosclerosis, macrophage function, and immunity. Here, we review recent advances in our understanding of the diverse biological actions of PPARgamma with an eye toward the expanding therapeutic potential of PPARgamma agonist drugs.

1,798 citations


Journal ArticleDOI
30 May 2008-Science
TL;DR: It is shown that MeCP2 associates with the transcriptional activator CREB1 at the promoter of an activated target but not a repressed target, and that it can function as both an activator and a repressor of transcription.
Abstract: Mutations in the gene encoding the transcriptional repressor methyl-CpG binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome Loss of function as well as increased dosage of the MECP2 gene cause a host of neuropsychiatric disorders To explore the molecular mechanism(s) underlying these disorders, we examined gene expression patterns in the hypothalamus of mice that either lack or overexpress MeCP2 In both models, MeCP2 dysfunction induced changes in the expression levels of thousands of genes, but unexpectedly the majority of genes (∼85%) appeared to be activated by MeCP2 We selected six genes and confirmed that MeCP2 binds to their promoters Furthermore, we showed that MeCP2 associates with the transcriptional activator CREB1 at the promoter of an activated target but not a repressed target These studies suggest that MeCP2 regulates the expression of a wide range of genes in the hypothalamus and that it can function as both an activator and a repressor of transcription

1,672 citations


Journal ArticleDOI
18 Jan 2008-Immunity
TL;DR: Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma, and is induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3.

1,589 citations


Journal ArticleDOI
01 May 2008-Nature
TL;DR: The identification of the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) as a regulator of Treg and TH17 cell differentiation in mice is reported, constituting a unique target for therapeutic immunomodulation.
Abstract: Regulatory T cells (Treg) expressing the transcription factor Foxp3 control the autoreactive components of the immune system. The development of Treg cells is reciprocally related to that of pro-inflammatory T cells producing interleukin-17 (TH17). Although Treg cell dysfunction and/or TH17 cell dysregulation are thought to contribute to the development of autoimmune disorders, little is known about the physiological pathways that control the generation of these cell lineages. Here we report the identification of the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) as a regulator of Treg and TH17 cell differentiation in mice. AHR activation by its ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin induced functional Treg cells that suppressed experimental autoimmune encephalomyelitis. On the other hand, AHR activation by 6-formylindolo[3,2-b]carbazole interfered with Treg cell development, boosted TH17 cell differentiation and increased the severity of experimental autoimmune encephalomyelitis in mice. Thus, AHR regulates both Treg and TH17 cell differentiation in a ligand-specific fashion, constituting a unique target for therapeutic immunomodulation. The aryl hydrocarbon receptor (AHR) is a transcription factor best known for mediating the toxicity of aromatic hydrocarbons such as dioxin: its activation leads to the production of detoxification enzymes. AHR has been intensely studied in relation to toxicology and cancer research, but no mechanistic connection to the immune system was known. Now two groups report a role for AHR in maintaining the balance between two T-lymphocyte populations — the Treg and TH17 cells — that are part of the immune regulation system dealing with tolerance of self-antigens and pathogen clearance. Both groups also show that AHR affects the severity of experimental autoimmune encephalitis, a mouse model of multiple sclerosis. This work raises the possibility that stimulation of AHR by environmental factors could be involved in the development of autoimmune disease, and point to AHR as a possible drug target for immunomodulation. The aryl hydrocarbon receptor (AHR) is the cellular receptor for a number of environment contaminants. It is shown here to induce regulatory T cells when bound to the ligand TCCD and promote TH17 differentiation when bound to FICZ.

1,572 citations


Journal ArticleDOI
TL;DR: In this paper, the E-cadherin binding partner beta-catenin was found to be necessary, but not sufficient, for the formation of anoikis resistance.
Abstract: Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts-an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherin's cell-cell adhesion and intracellular signaling functions. Whereas the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness, and anoikis resistance. We find the E-cadherin binding partner beta-catenin to be necessary, but not sufficient, for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.

1,393 citations


Journal ArticleDOI
03 Jul 2008-Nature
TL;DR: It is demonstrated that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprograming process.
Abstract: Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process.

1,377 citations


Journal ArticleDOI
05 Jun 2008-Nature
TL;DR: It is shown, with the use of mice lacking IKK-β in different cell types, that NF-κB is a critical transcriptional activator of HIF-1α and that basal NF-σB activity is required for Hif-1 α protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals.
Abstract: The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-inducible transcription factor-1 (HIF-1), whose alpha subunit is rapidly degraded under normoxia but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which controls genes involved in energy metabolism and angiogenesis, is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-kappaB plays a central role. NF-kappaB activation is controlled by IkappaB kinases (IKK), mainly IKK-beta, needed for phosphorylation-induced degradation of IkappaB inhibitors in response to infection and inflammation. IKK-beta is modestly activated in hypoxic cell cultures when PHDs that attenuate its activation are inhibited. However, defining the relationship between NF-kappaB and HIF-1alpha has proven elusive. Using in vitro systems, it was reported that HIF-1alpha activates NF-kappaB, that NF-kappaB controls HIF-1alpha transcription and that HIF-1alpha activation may be concurrent with inhibition of NF-kappaB. Here we show, with the use of mice lacking IKK-beta in different cell types, that NF-kappaB is a critical transcriptional activator of HIF-1alpha and that basal NF-kappaB activity is required for HIF-1alpha protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals. IKK-beta deficiency results in defective induction of HIF-1alpha target genes including vascular endothelial growth factor. IKK-beta is also essential for HIF-1alpha accumulation in macrophages experiencing a bacterial infection. Hence, IKK-beta is an important physiological contributor to the hypoxic response, linking it to innate immunity and inflammation.

1,340 citations


Journal ArticleDOI
TL;DR: In this paper, the c-Myc oncogenic transcription factor (Myc) is pathologically activated in many human malignancies and the predominant consequence of activation of Myc is widespread repression of miRNA expression.
Abstract: The c-Myc oncogenic transcription factor (Myc) is pathologically activated in many human malignancies. Myc is known to directly upregulate a pro-tumorigenic group of microRNAs (miRNAs) known as the miR-17-92 cluster. Through the analysis of human and mouse models of B cell lymphoma, we show here that Myc regulates a much broader set of miRNAs than previously anticipated. Unexpectedly, the predominant consequence of activation of Myc is widespread repression of miRNA expression. Chromatin immunoprecipitation reveals that much of this repression is likely to be a direct result of Myc binding to miRNA promoters. We further show that enforced expression of repressed miRNAs diminishes the tumorigenic potential of lymphoma cells. These results demonstrate that extensive reprogramming of the miRNA transcriptome by Myc contributes to tumorigenesis.

1,292 citations


Journal ArticleDOI
20 Oct 2008-Oncogene
TL;DR: This review analyses the present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.
Abstract: Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation of pro-apoptotic genes through the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and antiapoptotic proteins through distinct phosphorylation events. This review analyses our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.

Journal ArticleDOI
17 Oct 2008-Immunity
TL;DR: The results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

Journal Article
TL;DR: It is shown here that Myc regulates a much broader set of miRNAs than previously anticipated, and extensive reprogramming of the miRNA transcriptome by Myc contributes to tumorigenesis.
Abstract: The c-Myc oncogenic transcription factor (Myc) is pathologically activated in many human malignancies. Myc is known to directly upregulate a pro-tumorigenic group of microRNAs (miRNAs) known as the miR-17-92 cluster. Through the analysis of human and mouse models of B cell lymphoma, we show here that Myc regulates a much broader set of miRNAs than previously anticipated. Unexpectedly, the predominant consequence of activation of Myc is widespread repression of miRNA expression. Chromatin immunoprecipitation reveals that much of this repression is likely to be a direct result of Myc binding to miRNA promoters. We further show that enforced expression of repressed miRNAs diminishes the tumorigenic potential of lymphoma cells. These results demonstrate that extensive reprogramming of the miRNA transcriptome by Myc contributes to tumorigenesis.

Journal ArticleDOI
18 Jul 2008-Immunity
TL;DR: It is found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses and molecular antagonism and plasticity of Treg and Th17 cell programs are demonstrated.

Journal ArticleDOI
F. Van Roy1, Geert Berx1
TL;DR: The multiple mechanisms that disrupt E-cadherin function in cancer are reviewed: inactivating somatic and germline mutations, epigenetic silencing by DNA methylation and epithelial to mesenchymal transition-inducing transcription factors, and dysregulated protein processing.
Abstract: This review is dedicated to E-cadherin, a calcium-dependent cell-cell adhesion molecule with pivotal roles in epithelial cell behavior, tissue formation, and suppression of cancer. As founder member of the cadherin superfamily, it has been extensively investigated. We summarize the structure and regulation of the E-cadherin gene and transcript. Models for E-cadherin-catenin complexes and cell junctions are presented. The structure of the E-cadherin protein is discussed in view of the diverse functions of this remarkable protein. Homophilic and heterophilic adhesion are compared, including the role of E-cadherin as a receptor for pathogens. The complex post-translational processing of E-cadherin is reviewed, as well as the many signaling activities. The role of E-cadherin in embryonic development and morphogenesis is discussed for several animal models. Finally, we review the multiple mechanisms that disrupt E-cadherin function in cancer: inactivating somatic and germline mutations, epigenetic silencing by DNA methylation and epithelial to mesenchymal transition-inducing transcription factors, and dysregulated protein processing.

Journal ArticleDOI
07 Apr 2008-Oncogene
TL;DR: The FoxO family of Forkhead transcription factors plays an important role in longevity and tumor suppression by upregulating target genes involved in stress resistance, metabolism, cell cycle arrest and apoptosis and an intriguing possibility is that FoxO PTMs may act as a ‘molecular FoxO code’ read by selective protein partners to rapidly regulate gene-expression programs.
Abstract: The FoxO family of Forkhead transcription factors plays an important role in longevity and tumor suppression by upregulating target genes involved in stress resistance, metabolism, cell cycle arrest and apoptosis. FoxO transcription factors translate a variety of environmental stimuli, including insulin, growth factors, nutrients and oxidative stress, into specific gene-expression programs. These environmental stimuli control FoxO activity primarily by regulating their subcellular localization, but also by affecting their protein levels, DNA-binding properties and transcriptional activity. The precise regulation of FoxO transcription factors is enacted by an intricate combination of post-translational modifications (PTMs), including phosphorylation, acetylation and ubiquitination, and binding protein partners. An intriguing possibility is that FoxO PTMs may act as a 'molecular FoxO code' read by selective protein partners to rapidly regulate gene-expression programs. The effective control of FoxO activity in response to environmental stimuli is likely to be critical to prevent aging and age-dependent diseases, including cancer, neurodegenerative diseases and diabetes.

Journal ArticleDOI
TL;DR: The role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.
Abstract: The interferon regulatory factor (IRF) family, consisting of nine members in mammals, was identified in the late 1980s in the context of research into the type I interferon system. Subsequent studies over the past two decades have revealed the versatile and critical functions performed by this transcription factor family. Indeed, many IRF members play central roles in the cellular differentiation of hematopoietic cells and in the regulation of gene expression in response to pathogen-derived danger signals. In particular, the advances made in understanding the immunobiology of Toll-like and other pattern-recognition receptors have recently generated new momentum for the study of IRFs. Moreover, the role of several IRF family members in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.

Journal ArticleDOI
TL;DR: A double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype is established and has direct relevance to the role of these factors in tumor progression.
Abstract: Epithelial to mesenchymal transition occurs during embryologic development to allow tissue remodeling and is proposed to be a key step in the metastasis of epithelial-derived tumors. The miR-200 family of microRNAs plays a major role in specifying the epithelial phenotype by preventing expression of the transcription repressors, ZEB1/deltaEF1 and SIP1/ZEB2. We show here that miR-200a, miR-200b, and the related miR-429 are all encoded on a 7.5-kb polycistronic primary miRNA (pri-miR) transcript. We show that the promoter for the pri-miR is located within a 300-bp segment located 4 kb upstream of miR-200b. This promoter region is sufficient to confer expression in epithelial cells and is repressed in mesenchymal cells by ZEB1 and SIP1 through their binding to a conserved pair of ZEB-type E-box elements located proximal to the transcription start site. These findings establish a double-negative feedback loop controlling ZEB1-SIP1 and miR-200 family expression that regulates cellular phenotype and has direct relevance to the role of these factors in tumor progression.

Journal ArticleDOI
03 Jul 2008-Nature
TL;DR: A novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium—an epithelial sheet overlying the heart is identified and identified as previously unrecognized cardiomyocyte progenitors.
Abstract: The heart is formed from cardiogenic progenitors expressing the transcription factors Nkx2-5 and Isl1 (refs 1 and 2). These multipotent progenitors give rise to cardiomyocyte, smooth muscle and endothelial cells, the major lineages of the mature heart. Here we identify a novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium-an epithelial sheet overlying the heart. During normal murine heart development, a subset of these Wt1(+) precursors differentiated into fully functional cardiomyocytes. Wt1(+) proepicardial cells arose from progenitors that express Nkx2-5 and Isl1, suggesting that they share a developmental origin with multipotent Nkx2-5(+) and Isl1(+) progenitors. These results identify Wt1(+) epicardial cells as previously unrecognized cardiomyocyte progenitors, and lay the foundation for future efforts to harness the cardiogenic potential of these progenitors for cardiac regeneration and repair.

Journal ArticleDOI
24 Jan 2008-Nature
TL;DR: This work characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor in the presence of GA, and releases PIF3 from the negative effect of DELLA proteins.
Abstract: Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed that DELLA proteins restrain plant growth largely through their effect on gene expression. However, the precise mechanism of their function in coordinating GA signalling and gene expression remains unknown. Here we characterize a nuclear protein interaction cascade mediating transduction of GA signals to the activity regulation of a light-responsive transcription factor. In the absence of GA, nuclear-localized DELLA proteins accumulate to higher levels, interact with phytochrome-interacting factor 3 (PIF3, a bHLH-type transcription factor) and prevent PIF3 from binding to its target gene promoters and regulating gene expression, and therefore abrogate PIF3-mediated light control of hypocotyl elongation. In the presence of GA, GID1 proteins (GA receptors) elevate their direct interaction with DELLA proteins in the nucleus, trigger DELLA protein's ubiquitination and proteasome-mediated degradation, and thus release PIF3 from the negative effect of DELLA proteins.

Journal ArticleDOI
TL;DR: The nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology are reviewed.
Abstract: The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.

Journal ArticleDOI
19 Dec 2008-Science
TL;DR: Evidence of widespread divergent transcription at protein-encoding gene promoters is presented and it is suggested that Divergent transcription over short distances is common for active promoters and may help promoter regions maintain a state poised for subsequent regulation.
Abstract: Transcription initiation by RNA polymerase II (RNAPII) is thought to occur unidirectionally from most genes. Here, we present evidence of widespread divergent transcription at protein-encoding gene promoters. Transcription start site-associated RNAs (TSSa-RNAs) nonrandomly flank active promoters, with peaks of antisense and sense short RNAs at 250 nucleotides upstream and 50 nucleotides downstream of TSSs, respectively. Northern analysis shows that TSSa-RNAs are subsets of an RNA population 20 to 90 nucleotides in length. Promoter-associated RNAPII and H3K4-trimethylated histones, transcription initiation hallmarks, colocalize at sense and antisense TSSa-RNA positions; however, H3K79-dimethylated histones, characteristic of elongating RNAPII, are only present downstream of TSSs. These results suggest that divergent transcription over short distances is common for active promoters and may help promoter regions maintain a state poised for subsequent regulation.

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: It is found that the transcription factor XBP1, a key regulator of the unfolded protein response, is required for the unrelated function of normal fatty acid synthesis in the liver.
Abstract: Dietary carbohydrates regulate hepatic lipogenesis by controlling the expression of critical enzymes in glycolytic and lipogenic pathways. We found that the transcription factor XBP1, a key regulator of the unfolded protein response, is required for the unrelated function of normal fatty acid synthesis in the liver. XBP1 protein expression in mice was elevated after feeding carbohydrates and corresponded with the induction of critical genes involved in fatty acid synthesis. Inducible, selective deletion of XBP1 in the liver resulted in marked hypocholesterolemia and hypotriglyceridemia, secondary to a decreased production of lipids from the liver. This phenotype was not accompanied by hepatic steatosis or compromise in protein secretory function. The identification of XBP1 as a regulator of lipogenesis has important implications for human dyslipidemias.

Journal ArticleDOI
28 Mar 2008-Science
TL;DR: Common principles of transcription factor– and microRNA-mediated gene regulatory events are reviewed and conceptual differences in how these factors control gene expression are discussed.
Abstract: The properties of a cell are determined by the genetic information encoded in its genome. Understanding how such information is differentially and dynamically retrieved to define distinct cell types and cellular states is a major challenge facing molecular biology. Gene regulatory factors that control the expression of genomic information come in a variety of flavors, with transcription factors and microRNAs representing the most numerous gene regulatory factors in multicellular genomes. Here, I review common principles of transcription factor- and microRNA-mediated gene regulatory events and discuss conceptual differences in how these factors control gene expression.

Journal ArticleDOI
TL;DR: It is demonstrated that a transcriptional network consisting of S ND1 and its downstream targets is involved in regulating secondary wall biosynthesis in fibers and that NST1, NST2, VND6, and VND7 are functional homologs of SND1 that regulate the same downstream targets in different cell types.
Abstract: SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a master transcriptional switch activating the developmental program of secondary wall biosynthesis. Here, we demonstrate that a battery of SND1-regulated transcription factors is required for normal secondary wall biosynthesis in Arabidopsis thaliana. The expression of 11 SND1-regulated transcription factors, namely, SND2, SND3, MYB103, MYB85, MYB52, MYB54, MYB69, MYB42, MYB43, MYB20, and KNAT7 (a Knotted1-like homeodomain protein), was developmentally associated with cells undergoing secondary wall thickening. Of these, dominant repression of SND2, SND3, MYB103, MYB85, MYB52, MYB54, and KNAT7 significantly reduced secondary wall thickening in fiber cells. Overexpression of SND2, SND3, and MYB103 increased secondary wall thickening in fibers, and overexpression of MYB85 led to ectopic deposition of lignin in epidermal and cortical cells in stems. Furthermore, SND2, SND3, MYB103, MYB85, MYB52, and MYB54 were able to induce secondary wall biosynthetic genes. Direct target analysis using the estrogen-inducible system revealed that MYB46, SND3, MYB103, and KNAT7 were direct targets of SND1 and also of its close homologs, NST1, NST2, and vessel-specific VND6 and VND7. Together, these results demonstrate that a transcriptional network consisting of SND1 and its downstream targets is involved in regulating secondary wall biosynthesis in fibers and that NST1, NST2, VND6, and VND7 are functional homologs of SND1 that regulate the same downstream targets in different cell types.

Journal ArticleDOI
28 Nov 2008-Science
TL;DR: The cell differentiation and division balance necessary for controlling root meristem size and root growth is the result of the interaction between cytokinin and auxin through a simple regulatory circuit converging on the SHY2 gene.
Abstract: Plant growth and development are sustained by meristems. Meristem activity is controlled by auxin and cytokinin, two hormones whose interactions in determining a specific developmental output are still poorly understood. By means of a comprehensive genetic and molecular analysis in Arabidopsis, we show that a primary cytokinin-response transcription factor, ARR1, activates the gene SHY2/IAA3 (SHY2), a repressor of auxin signaling that negatively regulates the PIN auxin transport facilitator genes: thereby, cytokinin causes auxin redistribution, prompting cell differentiation. Conversely, auxin mediates degradation of the SHY2 protein, sustaining PIN activities and cell division. Thus, the cell differentiation and division balance necessary for controlling root meristem size and root growth is the result of the interaction between cytokinin and auxin through a simple regulatory circuit converging on the SHY2 gene.

Journal ArticleDOI
TL;DR: Growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.
Abstract: Hypoxia occurs in the majority of tumours, promoting angiogenesis, metastasis and resistance to therapy. Responses to hypoxia are orchestrated in part through activation of the hypoxia-inducible factor family of transcription factors (HIFs). Recently, two additional O(2)-sensitive signalling pathways have also been implicated: signalling through the mammalian target of rapamycin (mTOR) kinase and signalling through activation of the unfolded protein response (UPR). Although they are activated independently, growing evidence suggests that HIF-, mTOR- and UPR-dependent responses to hypoxia act in an integrated way, influencing each other and common downstream pathways that affect gene expression, metabolism, cell survival, tumorigenesis and tumour growth.

Journal ArticleDOI
21 Mar 2008-Cell
TL;DR: It is shown that IIS not only opposes DAF-16 but also directly inhibits SKN-1 in parallel, indicating that the transcription network regulated by SKn-1 promotes longevity and is an important direct target of IIS.

Journal ArticleDOI
TL;DR: It is reported that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles, and Ez h1 knockdown was ineffectual on global H3K27me2/3 levels, while Ezh 1 directly and robustly represses transcription from chromatinized templates and compacts chromatin in the absence of the methyltransferase cofactor SAM.

Journal ArticleDOI
TL;DR: Findings point to these miRNAs as critical components of an SRF-dependent myogenic transcriptional circuit in orchestrating cardiac development, gene expression, and function.
Abstract: MicroRNAs (miRNAs) modulate gene expression by inhibiting mRNA translation and promoting mRNA degradation, but little is known of their potential roles in organ formation or function. miR-133a-1 and miR-133a-2 are identical, muscle-specific miRNAs that are regulated during muscle development by the SRF transcription factor. We show that mice lacking either miR-133a-1 or miR-133a-2 are normal, whereas deletion of both miRNAs causes lethal ventricular-septal defects in approximately half of double-mutant embryos or neonates; miR-133a double-mutant mice that survive to adulthood succumb to dilated cardiomyopathy and heart failure. The absence of miR-133a expression results in ectopic expression of smooth muscle genes in the heart and aberrant cardiomyocyte proliferation. These abnormalities can be attributed, at least in part, to elevated expression of SRF and cyclin D2, which are targets for repression by miR-133a. These findings reveal essential and redundant roles for miR-133a-1 and miR-133a-2 in orchestrating cardiac development, gene expression, and function and point to these miRNAs as critical components of an SRF-dependent myogenic transcriptional circuit.