scispace - formally typeset
Search or ask a question

Showing papers by "Delft University of Technology published in 2015"


Journal ArticleDOI
TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Abstract: Complex networks arise in a wide range of biological and sociotechnical systems. Epidemic spreading is central to our understanding of dynamical processes in complex networks, and is of interest to physicists, mathematicians, epidemiologists, and computer and social scientists. This review presents the main results and paradigmatic models in infectious disease modeling and generalized social contagion processes.

3,173 citations


Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations


Journal ArticleDOI
21 Oct 2015-Nature
TL;DR: The data imply statistically significant rejection of the local-realist null hypothesis and could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.
Abstract: More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

2,397 citations


Journal ArticleDOI
TL;DR: In this article, a new method, called best-worst method (BWM) is proposed to solve multi-criteria decision-making (MCDM) problems, in which a number of alternatives are evaluated with respect to different criteria in order to select the best alternative(s).
Abstract: In this paper, a new method, called best-worst method (BWM) is proposed to solve multi-criteria decision-making (MCDM) problems. In an MCDM problem, a number of alternatives are evaluated with respect to a number of criteria in order to select the best alternative(s). According to BWM, the best (e.g. most desirable, most important) and the worst (e.g. least desirable, least important) criteria are identified first by the decision-maker. Pairwise comparisons are then conducted between each of these two criteria (best and worst) and the other criteria. A maximin problem is then formulated and solved to determine the weights of different criteria. The weights of the alternatives with respect to different criteria are obtained using the same process. The final scores of the alternatives are derived by aggregating the weights from different sets of criteria and alternatives, based on which the best alternative is selected. A consistency ratio is proposed for the BWM to check the reliability of the comparisons. To illustrate the proposed method and evaluate its performance, we used some numerical examples and a real-word decision-making problem (mobile phone selection). For the purpose of comparison, we chose AHP (analytic hierarchy process), which is also a pairwise comparison-based method. Statistical results show that BWM performs significantly better than AHP with respect to the consistency ratio, and the other evaluation criteria: minimum violation, total deviation, and conformity. The salient features of the proposed method, compared to the existing MCDM methods, are: (1) it requires less comparison data; (2) it leads to more consistent comparisons, which means that it produces more reliable results.

2,214 citations


Journal ArticleDOI
TL;DR: A bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometer lateral dimensions and nanometer thickness is presented and opens the door to ultrathin MOF-polymer composites for various applications.
Abstract: The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. T.R. is grateful to TUDelft for funding. G.P. acknowledges the A. von Humboldt Foundation for a research grant. A.C., I.L. and F.X.L.i.X. thank Consolider-Ingenio 2010 (project MULTICAT) and the ‘Severo Ochoa’ programme for support. I.L. also thanks CSIC for a JAE doctoral grant.

1,649 citations



Journal ArticleDOI
26 Nov 2015-Nature
TL;DR: The enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrates to conserve energy are reported.
Abstract: Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 18901, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle2. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms3. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.

1,225 citations


Journal ArticleDOI
22 Jan 2015-ACS Nano
TL;DR: The state of the art in research on colloidal NCs is reviewed focusing on the most recent works published in the last 2 years, where semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available.
Abstract: Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenom...

988 citations


Journal ArticleDOI
TL;DR: In this article, a low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems is proposed, which involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware.
Abstract: Antenna arrays will be an important ingredient in millimeter-wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multiuser MIMO precoding techniques at mmWave. This paper develops low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. The performance of the proposed algorithm is analyzed in the large dimensional regime and in single-path channels. When the analog and digital precoding vectors are selected from quantized codebooks, the rate loss due to the joint quantization is characterized, and insights are given into the performance of hybrid precoding compared with analog-only beamforming solutions. Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks.

919 citations


Journal ArticleDOI
TL;DR: This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic P/O devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system.
Abstract: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

853 citations


Journal ArticleDOI
30 Sep 2015
TL;DR: This position paper position that a new shift is necessary in computing, taking the control of computing applications, data, and services away from some central nodes to the other logical extreme of the Internet, and refers to this vision of human-centered edge-device based computing as Edge-centric Computing.
Abstract: In many aspects of human activity, there has been a continuous struggle between the forces of centralization and decentralization. Computing exhibits the same phenomenon; we have gone from mainframes to PCs and local networks in the past, and over the last decade we have seen a centralization and consolidation of services and applications in data centers and clouds. We position that a new shift is necessary. Technological advances such as powerful dedicated connection boxes deployed in most homes, high capacity mobile end-user devices and powerful wireless networks, along with growing user concerns about trust, privacy, and autonomy requires taking the control of computing applications, data, and services away from some central nodes (the "core") to the other logical extreme (the "edge") of the Internet. We also position that this development can help blurring the boundary between man and machine, and embrace social computing in which humans are part of the computation and decision making loop, resulting in a human-centered system design. We refer to this vision of human-centered edge-device based computing as Edge-centric Computing. We elaborate in this position paper on this vision and present the research challenges associated with its implementation.

Posted Content
TL;DR: It is demonstrated that the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs—in many interesting cases even as tractable linear programs.
Abstract: We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs---in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.

Journal ArticleDOI
13 Jan 2015
TL;DR: In this paper, the authors studied the environmental instability of mechanically exfoliated few-layer black phosphorus (BP) flakes and found that long term exposure to ambient conditions results in a layer-by-layer etching process of BP flakes.
Abstract: We study the environmental instability of mechanically exfoliated few-layer black phosphorus (BP). From continuous measurements of flake topography over several days, we observe an increase of over 200% in volume due to the condensation of moisture from air. We find that long term exposure to ambient conditions results in a layer-by-layer etching process of BP flakes. Interestingly, flakes can be etched down to single layer (phosphorene) thicknesses. BPʼs strong affinity for water greatly modifies the performance of fabricated field-effect transistors (FETs) measured in ambient conditions. Upon exposure to air, we differentiate between two timescales for changes in BP FET transfer characteristics: a short timescale (minutes) in which a shift in the threshold voltage occurs due to physisorbed oxygen and nitrogen, and a long timescale (hours) in which strong p-type doping occurs from water absorption. Continuous measurements of BP FETs in air reveal eventual degradation and break-down of the channel material after several days due to the layer-by-layer etching process.

Journal ArticleDOI
TL;DR: In this article, the authors investigated user acceptance, concerns, and willingness to buy partially, highly, and fully automated vehicles by means of a 63-question Internet-based survey, and collected 5000 responses from 109 countries (40 countries with at least 25 respondents).
Abstract: This study investigated user acceptance, concerns, and willingness to buy partially, highly, and fully automated vehicles. By means of a 63-question Internet-based survey, we collected 5000 responses from 109 countries (40 countries with at least 25 respondents). We determined cross-national differences, and assessed correlations with personal variables, such as age, gender, and personality traits as measured with a short version of the Big Five Inventory. Results showed that respondents, on average, found manual driving the most enjoyable mode of driving. Responses were diverse: 22% of the respondents did not want to pay more than $0 for a fully automated driving system, whereas 5% indicated they would be willing to pay more than $30,000, and 33% indicated that fully automated driving would be highly enjoyable. 69% of respondents estimated that fully automated driving will reach a 50% market share between now and 2050. Respondents were found to be most concerned about software hacking/misuse, and were also concerned about legal issues and safety. Respondents scoring higher on neuroticism were slightly less comfortable about data transmitting, whereas respondents scoring higher on agreeableness were slightly more comfortable with this. Respondents from more developed countries (in terms of lower accident statistics, higher education, and higher income) were less comfortable with their vehicle transmitting data, with cross-national correlations between ρ = −0.80 and ρ = −0.90. The present results indicate the major areas of promise and concern among the international public, and could be useful for vehicle developers and other stakeholders.

Journal ArticleDOI
TL;DR: In this article, a review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.
Abstract: A vision has formed in recent years of the components necessary for a large-scale quantum network. Single trapped atoms can serve as the nodes of this network, with the links established by flying photons that are coupled to the atoms using optical resonators. This review describes progress towards the goal of multinode networks using the current generation of experiments, which have achieved unprecedented levels of atomic qubit control and light-matter coupling efficiencies.

Journal ArticleDOI
TL;DR: The state-of-the-art in photodetectors based on semiconducting 2D materials are reviewed, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.
Abstract: Two-dimensional (2D) materials have attracted a great deal of interest in recent years. This family of materials allows for the realization of versatile electronic devices and holds promise for next-generation (opto)electronics. Their electronic properties strongly depend on the number of layers, making them interesting from a fundamental standpoint. For electronic applications, semiconducting 2D materials benefit from sizable mobilities and large on/off ratios, due to the large modulation achievable via the gate field-effect. Moreover, being mechanically strong and flexible, these materials can withstand large strain (>10%) before rupture, making them interesting for strain engineering and flexible devices. Even in their single layer form, semiconducting 2D materials have demonstrated efficient light absorption, enabling large responsivity in photodetectors. Therefore, semiconducting layered 2D materials are strong candidates for optoelectronic applications, especially for photodetection. Here, we review the state-of-the-art in photodetectors based on semiconducting 2D materials, focusing on the transition metal dichalcogenides, novel van der Waals materials, black phosphorus, and heterostructures.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive bibliometric analysis of the twelve most frequent city categories are conceptualized individually and in relation to one another in the academic literature, and the authors hypothesize that, notwithstanding some degree of overlap and cross-fertilization, in their essence the observed categories each harbor particular conceptual perspectives that render them distinctive.

Journal ArticleDOI
TL;DR: The dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin are explored and provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics.

Journal ArticleDOI
TL;DR: The field of metal–organic framework based mixed matrix membranes (M4s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation.
Abstract: The field of metal–organic framework based mixed matrix membranes (M4s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M4s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined.

Journal ArticleDOI
TL;DR: In this article, the authors present the largest database of calculated elastic properties for inorganic compounds to date, which contains full elastic information for 1,181 compounds, and this number is growing steadily.
Abstract: The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design.

Journal ArticleDOI
TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.

Journal ArticleDOI
04 Sep 2015-Science
TL;DR: The transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel is reported.
Abstract: Fuel-driven self-assembly of actin filaments and microtubules is a key component of cellular organization. Continuous energy supply maintains these transient biomolecular assemblies far from thermodynamic equilibrium, unlike typical synthetic systems that spontaneously assemble at thermodynamic equilibrium. Here, we report the transient self-assembly of synthetic molecules into active materials, driven by the consumption of a chemical fuel. In these materials, reaction rates and fuel levels, instead of equilibrium composition, determine properties such as lifetime, stiffness, and self-regeneration capability. Fibers exhibit strongly nonlinear behavior including stochastic collapse and simultaneous growth and shrinkage, reminiscent of microtubule dynamics.

Journal ArticleDOI
TL;DR: It is shown, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN.
Abstract: Hexagonal boron nitride (h-BN) is a natural hyperbolic material, in which the dielectric constants are the same in the basal plane (e(t) ≡ e(x) = e(y)) but have opposite signs (e(t)e(z) < 0) in the normal plane (e(z)). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons--collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN, so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon-phonon polaritons. The hyperbolic plasmon-phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5-2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon-phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone.

Journal ArticleDOI
TL;DR: It is demonstrated that aerobic granular sludge technology can effectively be implemented for the treatment of domestic wastewater with low energy usage and robust granule bed formation.

Journal ArticleDOI
20 Apr 2015
TL;DR: In this article, the authors observed a single-photon emission from localized excitons in a monolayer of tungsten diselenide (WSe2), where the emitters appear at the edges of the flakes and are linearly polarized.
Abstract: Single-photon sources are basic building blocks for quantum communications, processing, and metrology. Solid-state quantum emitters in semiconductors have the potential for robust and reliable generation of photons, and atomically thin transition metal dichalcogenides, such as MoS2, MoSe2, WS2, and WSe2, are a promising new class of two-dimensional semiconductors with a direct optical bandgap in the visible or near-IR. Here, we observe bright and stable single-photon emission from localized excitons in a monolayer of tungsten diselenide (WSe2). The emitters appear at the edges of the flakes and are linearly polarized. The spectral width of their emission is below 120 μeV in a freestanding WSe2 monolayer. Photoluminescence excitation spectroscopy reveals the excitonic nature of the emitters and provides evidence that these single excitons originate from free excitons trapped in local potential wells at the edges of the atomically thin flakes. We find that the emitters can also be deterministically created by scratching the WSe2 monolayer. Their excellent spectral stability implies that these localized single-photon emitters could find application in optoelectronics. Our results light the way to single exciton physics and quantum optics with atomically thin semiconductors.

Journal ArticleDOI
TL;DR: In this paper, the authors used ENVI-met to simulate outdoor air temperature, mean radiant temperature, wind speed and relative humidity, and RayMan was used to convert these data into Physiological Equivalent Temperature (PET).

Journal ArticleDOI
TL;DR: The versatility of CRISPR/Cas9-based engineering of yeast is demonstrated by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci.
Abstract: A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system.

Journal ArticleDOI
TL;DR: VizBin can be applied de novo for the visualization and subsequent binning of metagenomic datasets from single samples, and it can be used for the post hoc inspection and refinement of automatically generated bins.
Abstract: Background: Metagenomics is limited in its ability to link distinct microbial populations to genetic potential due to a current lack of representative isolate genome sequences. Reference-independent approaches, which exploit for example inherent genomic signatures for the clustering of metagenomic fragments (binning), offer the prospect to resolve and reconstruct population-level genomic complements without the need for prior knowledge. Results: We present VizBin, a Java™-based application which offers efficient and intuitive reference-independent visualization of metagenomic datasets from single samples for subsequent human-in-the-loop inspection and binning. The method is based on nonlinear dimension reduction of genomic signatures and exploits the superior pattern recognition capabilities of the human eye-brain system for cluster identification and delineation. We demonstrate the general applicability of VizBin for the analysis of metagenomic sequence data by presenting results from two cellulolytic microbial communities and one human-borne microbial consortium. The superior performance of our application compared to other analogous metagenomic visualization and binning methods is also presented. Conclusions: VizBin can be applied de novo for the visualization and subsequent binning of metagenomic datasets from single samples, and it can be used for the post hoc inspection and refinement of automatically generated bins. Due to its computational efficiency, it can be run on common desktop machines and enables the analysis of complex metagenomic datasets in a matter of minutes. The software implementation is available at https://claczny.github.io/VizBin under the BSD License (four-clause) and runs under Microsoft Windows™, Apple Mac OS X™ (10.7 to 10.10), and Linux.

Journal ArticleDOI
TL;DR: This work emphasizes the relevance of the electrolyte effect to obtain catalytically active phases in Ni-based OECs, in addition to the key role of the Fe impurities.
Abstract: Ni-based oxygen evolution catalysts (OECs) are cost-effective and very active materials that can be potentially used for efficient solar-to-fuel conversion process toward sustainable energy generation. We present a systematic spectroelectrochemical characterization of two Fe-containing Ni-based OECs, namely nickel borate (Ni(Fe)−Bi) and nickel oxyhydroxide (Ni(Fe)OOH). Our Raman and X-ray absorption spectroscopy results show that both OECs are chemically similar, and that the borate anions do not play an apparent role in the catalytic process at pH 13. Furthermore, we show spectroscopic evidence for the generation of negatively charged sites in both OECs (NiOO–), which can be described as adsorbed “active oxygen”. Our data conclusively links the OER activity of the Ni-based OECs with the generation of those sites on the surface of the OECs. The OER activity of both OECs is strongly pH dependent, which can be attributed to a deprotonation process of the Ni-based OECs, leading to the formation of the negati...

Journal ArticleDOI
TL;DR: Ongoing development—including of dedicated probes, integrated microscopes, large-scale and three-dimensional EM and super-resolution fluorescence microscopy—now paves the way for broad CLEM implementation in biology.
Abstract: Microscopy has gone hand in hand with the study of living systems since van Leeuwenhoek observed living microorganisms and cells in 1674 using his light microscope. A spectrum of dyes and probes now enable the localization of molecules of interest within living cells by fluorescence microscopy. With electron microscopy (EM), cellular ultrastructure has been revealed. Bridging these two modalities, correlated light microscopy and EM (CLEM) opens new avenues. Studies of protein dynamics with fluorescent proteins (FPs), which leave the investigator 'in the dark' concerning cellular context, can be followed by EM examination. Rare events can be preselected at the light microscopy level before EM analysis. Ongoing development-including of dedicated probes, integrated microscopes, large-scale and three-dimensional EM and super-resolution fluorescence microscopy-now paves the way for broad CLEM implementation in biology.