scispace - formally typeset
Search or ask a question

Showing papers by "Johns Hopkins University School of Medicine published in 1999"


Journal ArticleDOI
02 Apr 1999-Science
TL;DR: Adult stem cells isolated from marrow aspirates of volunteer donors could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages.
Abstract: Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.

20,479 citations


Journal ArticleDOI
06 Aug 1999-Science
TL;DR: A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome), finding that 17 percent were essential for viability in rich medium.
Abstract: The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.

4,051 citations


Journal ArticleDOI
TL;DR: Major changes include the following: rejection with vasculitis is separated from tubulointerstitial rejection; severe rejection requires transmural changes in arteries; "borderline" rejection can only be interpreted in a clinical context; antibody-mediated rejection is further defined, and lesion scoring focuses on most severely involved structures.

2,974 citations


Journal ArticleDOI
TL;DR: Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.
Abstract: According to World Health Organization estimates, India will have the greatest number of human immunodeficiency virus (HIV)-infected individuals of any country by the end of this decade (1, 6). High rates of sexually transmitted diseases, rapidly increasing seroprevalence in female commercial sex workers, and inadequate facilities for HIV testing, counseling, and prevention are the major contributing factors in the recent explosive increases in the numbers of HIV infections (5, 6, 24, 29). While antiretroviral drugs have reduced mortality from AIDS in developed nations, their effect will be negligible elsewhere due to their cost. For most communicable diseases, vaccines offer the most cost-effective control strategy. It is likely that development of a vaccine for HIV will require knowledge of the viral variants being transmitted in the target population. Despite India’s impending predominance in the worldwide pandemic, little is known of the genetic diversity of HIV-1 in India. The HIV-1 sequence database is growing exponentially, but the distribution of submitted sequences is not representative of the worldwide picture. Subtype C has been reported in nearly every region affected by HIV-1 (11, 23, 28) and predominates in India, and it also causes 74% of infections in southern Africa and 96% of infections in northern Africa (11, 18, 32). Given the combined population of India and the other regions affected, subtype C is likely to be the most commonly transmitted HIV-1 subtype worldwide. In contrast, 7% of the available HIV-1 sequence data is from subtype C-infected individuals (37), and of the 46 completely sequenced HIV-1 genomes (excluding multiple derivatives of HIV-1LAI), only two are of subtype C, one from a 1992 Brazilian sample and the other from a 1986 Ethiopian sample (37). In November 1997, an analysis of cross-clade epitope variation (9) excluded the C clade from evaluation of p24gag epitopes because of a lack of sequence data, whereas there was sufficient data to analyze subtypes A, B, D, F, G, and H (no HIV-1 harboring a subtype E gag gene has been found). Further sequence data from subtype C is needed, but the past approach of generating data from small subgenomic amplicons is no longer sufficient. Recent developments have made full-genome characterization of HIV-1 isolates both important and feasible. First, the recognition of intersubtype recombination in a significant proportion of HIV-1 sequences (44, 45) has led to detection of mosaic genomes in many regions of the world affected by multiple subtypes (14, 17, 31). Subtypes A, B, and C in India have been reported (4, 22, 30, 31, 59), but mosaic HIV-1 there has not been reported. The existence of such recombinants makes characterization of variants by analyzing subgenomic segments incomplete. Second, immune responses to vaccines based on single genes such as env have been limited (13), and attention is being shifted toward multivalent vaccines that incorporate other gene products. Third, interactions among discontinuous regions of the genome, such as between the long terminal repeat (LTR) and pol (26), can be detected only when such regions can be analyzed from the same template. In an effort to characterize subtype C virus genomes being transmitted currently in India, viral isolates were obtained from individuals with seroincident infections in India. Three of the isolates (collected in 1994 and 1995) were known to be non-syncytium inducing (NSI) and therefore resembled viruses transmitted through unprotected sexual contact, which account for 75 to 85% of new infections (2, 15, 61). These isolates were cloned, and nearly full-length genomic sequences were determined. Detailed sequence analysis was performed, as was an analysis of variation in characterized cytotoxic T lymphocyte (CTL) epitopes.

2,472 citations


Journal ArticleDOI
11 Aug 1999-JAMA
TL;DR: The data suggest that African American patients rate their visits with physicians as less participatory than whites, however, patients seeing physicians of their own race rate their physicians' decision-making styles as more participatory.
Abstract: ContextMany studies have documented race and gender differences in health care received by patients. However, few studies have related differences in the quality of interpersonal care to patient and physician race and gender.ObjectiveTo describe how the race/ethnicity and gender of patients and physicians are associated with physicians' participatory decision-making (PDM) styles.Design, Setting, and ParticipantsTelephone survey conducted between November 1996 and June 1998 of 1816 adults aged 18 to 65 years (mean age, 41 years) who had recently attended 1 of 32 primary care practices associated with a large mixed-model managed care organization in an urban setting. Sixty-six percent of patients surveyed were female, 43% were white, and 45% were African American. The physician sample (n=64) was 63% male, with 56% white, and 25% African American.Main Outcome MeasurePatients' ratings of their physicians' PDM style on a 100-point scale.ResultsAfrican American patients rated their visits as significantly less participatory than whites in models adjusting for patient age, gender, education, marital status, health status, and length of the patient-physician relationship (mean [SE] PDM score, 58.0 [1.2] vs 60.6 [3.3]; P=.03). Ratings of minority and white physicians did not differ with respect to PDM style (adjusted mean [SE] PDM score for African Americans, 59.2 [1.7] vs whites, 61.7 [3.1]; P=.13). Patients in race-concordant relationships with their physicians rated their visits as significantly more participatory than patients in race-discordant relationships (difference [SE], 2.6 [1.1]; P=.02). Patients of female physicians had more participatory visits (adjusted mean [SE] PDM score for female, 62.4 [1.3] vs male, 59.5 [3.1]; P=.03), but gender concordance between physicians and patients was not significantly related to PDM score (unadjusted mean [SE] PDM score, 76.0 [1.0] for concordant vs 74.5 [0.9] for discordant; P=.12). Patient satisfaction was highly associated with PDM score within all race/ethnicity groups.ConclusionsOur data suggest that African American patients rate their visits with physicians as less participatory than whites. However, patients seeing physicians of their own race rate their physicians' decision-making styles as more participatory. Improving cross-cultural communication between primary care physicians and patients and providing patients with access to a diverse group of physicians may lead to more patient involvement in care, higher levels of patient satisfaction, and better health outcomes.

1,995 citations


Journal ArticleDOI
TL;DR: The mean half-life of the latent reservoir was very long (43.9 months) and the decay rate of this latent reservoir in 34 treated adults whose plasma virus levels were undetectable as mentioned in this paper.
Abstract: Combination therapy for HIV-1 infection can reduce plasma virus to undetectable levels, indicating that prolonged treatment might eradicate the infection. However, HIV-1 can persist in a latent form in resting CD4+ T cells. We measured the decay rate of this latent reservoir in 34 treated adults whose plasma virus levels were undetectable. The mean half-life of the latent reservoir was very long (43.9 months). If the latent reservoir consists of only 1 x 10(5) cells, eradication could take as long as 60 years. Thus, latent infection of resting CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective anti-retroviral therapy.

1,921 citations


Journal ArticleDOI
TL;DR: HIF-1 appears to function as a master regulator of O2 homeostasis that plays essential roles in cellular and systemic physiology, development, and pathophysiology.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic-helix-loop-helix-PAS transcription factor consisting of HIF-1 alpha and HIF-1 beta subunits. HIF-1 alpha expression and HIF-1 transcriptional activity increase exponentially as cellular O2 concentration is decreased. Several dozen target genes that are transactivated by HIF-1 have been identified, including those encoding erythropoietin, glucose transporters, glycolytic enzymes, and vascular endothelial growth factor. The products of these genes either increase O2 delivery or allow metabolic adaptation to reduced O2 availability. HIF-1 is required for cardiac and vascular development and embryonic survival. In fetal and postnatal life, HIF-1 is required for a variety of physiological responses to chronic hypoxia. HIF-1 expression is increased in tumor cells by multiple mechanisms and may mediate adaptation to hypoxia that is critical for tumor progression. HIF-1 thus appears to function as a master regulator of O2 homeostasis that plays essential roles in cellular and systemic physiology, development, and pathophysiology.

1,912 citations


Journal ArticleDOI
TL;DR: Although DNA methylation and histone deacetylation appear to act as synergistic layers for the silencing of genes in cancer, dense CpG island methylation is dominant for the stable maintenance of a silent state at these loci.
Abstract: Densely methylated DNA associates with transcriptionally repressive chromatin characterized by the presence of underacetylated histones. Recently, these two epigenetic processes have been dynamically linked. The methyl-CpG-binding protein MeCP2 appears to reside in a complex with histone deacetylase activity. MeCP2 can mediate formation of transcriptionally repressive chromatin on methylated promoter templates in vitro, and this process can be reversed by trichostatin A (TSA), a specific inhibitor of histone deacetylase. Little is known, however, about the relative roles of methylation and histone deacetylase activity in the stable inhibition of transcription on densely methylated endogenous promoters, such as those for silenced alleles of imprinted genes, genes on the female inactive X chromosome and tumour-suppressor genes inactivated in cancer cells. We show here that the hypermethylated genes MLH1, TIMP3 (TIMP3), CDKN2B (INK4B, p15) and CDKN2A (INK4, p16) cannot be transcriptionally reactivated with TSA alone in tumour cells in which we have shown that TSA alone can upregulate the expression of non-methylated genes. Following minimal demethylation and slight gene reactivation in the presence of low dose 5-aza-2'deoxycytidine (5Aza-dC), however, TSA treatment results in robust re-expression of each gene. TSA does not contribute to demethylation of the genes, and none of the treatments alter the chromatin structure associated with the hypermethylated promoters. Thus, although DNA methylation and histone deacetylation appear to act as synergistic layers for the silencing of genes in cancer, dense CpG island methylation is dominant for the stable maintenance of a silent state at these loci.

1,867 citations



Journal ArticleDOI
TL;DR: The c-myc gene was discovered as the cellular homolog of the retroviral v- myc oncogene 20 years ago and found to be activated in various animal and human tumors, suggesting that it is critical for development.
Abstract: The c-myc gene was discovered as the cellular homolog of the retroviral v-myc oncogene 20 years ago (23, 25, 167). The c-myc proto-oncogene was subsequently found to be activated in various animal and human tumors (37, 39, 42). It belongs to the family of myc genes that includes B-myc, L-myc, N-myc, and s-myc; however, only c-myc, L-myc, and N-myc have neoplastic potential (54, 82, 102, 118, 178). Targeted homozygous deletion of the murine c-myc gene results in embryonic lethality, suggesting that it is critical for development (43). Homozygous inactivation of c-myc in rat fibroblasts caused a marked prolongation of cell doubling time, further suggesting a central role for c-myc in regulating cell proliferation (121). The frequency of genetic alterations of c-myc in human cancers (42) has allowed an estimation that approximately 70,000 U.S. cancer deaths per year are associated with changes in the c-myc gene or its expression. Given that c-myc may contribute to one-seventh of U.S. cancer deaths, recent efforts have been directed toward understanding the function of the c-Myc protein in cancer biology with the hope that therapeutic insights will emerge. Past efforts, which have contributed significantly to our current understanding of c-myc, are discussed in a number of excellent reviews (23, 29, 37, 40, 44, 52, 66, 82, 94, 102, 118, 125, 132, 145, 178, 182, 186).

1,630 citations


Journal Article
TL;DR: The presence of aberrant hypermethylation was associated with loss of MGMT protein, in contrast to retention of protein in the majority of tumors without aberrantHypermethylation, suggesting that epigenetic inactivation of MG MT plays an important role in primary human neoplasia.
Abstract: The DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) removes alkyl adducts from the O6 position of guanine. MGMT expression is decreased in some tumor tissues, and lack of activity has been observed in some cell lines. Loss of expression is rarely due to deletion, mutation, or rearrangement of the MGMT gene, but methylation of discrete regions of the CpG island of MGMT has been associated with the silencing of the gene in cell lines. We used methylation-specific PCR to study the promoter methylation of the MGMT gene. All normal tissues and expressing cancer cell lines were unmethylated, whereas nonexpressing cancer cell lines were methylated. Among the more than 500 primary human tumors examined, MGMT hypermethylation was present in a subset of specific types of cancer. In gliomas and colorectal carcinomas, aberrant methylation was detected in 40% of the tumors, whereas in non-small cell lung carcinomas, lymphomas, and head and neck carcinomas, this alteration was found in 25% of the tumors. MGMT methylation was found rarely or not at all in other tumor types. We also analyzed MGMT expression by immunohistochemistry in relation to the methylation status in 31 primary tumors. The presence of aberrant hypermethylation was associated with loss of MGMT protein, in contrast to retention of protein in the majority of tumors without aberrant hypermethylation. Our results suggest that epigenetic inactivation of MGMT plays an important role in primary human neoplasia.

Journal ArticleDOI
TL;DR: The historical and logical foundations of the dominant school of medical statistics, sometimes referred to as frequentist statistics, are explored and the logical fallacy at the heart of this system is explicated, which maintains such a tenacious hold on the minds of investigators, policymakers, and journal editors.
Abstract: An important problem exists in the interpretation of modern medical research data: Biological understanding and previous research play little formal role in the interpretation of quantitative results. This phenomenon is manifest in the discussion sections of research articles and ultimately can affect the reliability of conclusions. The standard statistical approach has created this situation by promoting the illusion that conclusions can be produced with certain "error rates," without consideration of information from outside the experiment. This statistical approach, the key components of which are P values and hypothesis tests, is widely perceived as a mathematically coherent approach to inference. There is little appreciation in the medical community that the methodology is an amalgam of incompatible elements, whose utility for scientific inference has been the subject of intense debate among statisticians for almost 70 years. This article introduces some of the key elements of that debate and traces the appeal and adverse impact of this methodology to the P value fallacy, the mistaken idea that a single number can capture both the long-run outcomes of an experiment and the evidential meaning of a single result. This argument is made as a prelude to the suggestion that another measure of evidence should be used--the Bayes factor, which properly separates issues of long-run behavior from evidential strength and allows the integration of background knowledge with statistical findings.

Journal ArticleDOI
TL;DR: It is demonstrated that oral allergen-gene immunization with chitosan–DNA nanoparticles is effective in modulating murine anaphylactic responses, and its prophylactic utility in treating food allergy is indicated.
Abstract: Food allergy is a common and often fatal disease with no effective treatment We describe here a new immunoprophylactic strategy using oral allergen-gene immunization to modulate peanut antigen-induced murine anaphylactic responses Oral administration of DNA nanoparticles synthesized by complexing plasmid DNA with chitosan, a natural biocompatible polysaccharide, resulted in transduced gene expression in the intestinal epithelium Mice receiving nanoparticles containing a dominant peanut allergen gene (pCMVArah2) produced secretory IgA and serum IgG2a Compared with non-immunized mice or mice treated with 'naked' DNA, mice immunized with nanoparticles showed a substantial reduction in allergen-induced anaphylaxis associated with reduced levels of IgE, plasma histamine and vascular leakage These results demonstrate that oral allergen-gene immunization with chitosan-DNA nanoparticles is effective in modulating murine anaphylactic responses, and indicate its prophylactic utility in treating food allergy

Journal ArticleDOI
TL;DR: Over seven decades of classical biochemical studies showed that tumors have altered metabolic profiles and display high rates of glucose uptake and glycolysis, which might confer a common advantage on many different types of cancers, which allows the cells to survive and invade.

Journal ArticleDOI
TL;DR: Quality of life is measured as physical and social functioning, and perceived physical and mental well‐being, and complications of diabetes are the most important disease‐specific determinant of quality of life.
Abstract: Quality of life is an important health outcome in its own right, representing the ultimate goal of all health interventions. This paper reviews the published, English-language literature on self-perceived quality of life among adults with diabetes. Quality of life is measured as physical and social functioning, and perceived physical and mental well-being. People with diabetes have a worse quality of life than people with no chronic illness, but a better quality of life than people with most other serious chronic diseases. Duration and type of diabetes are not consistently associated with quality of life. Intensive treatment does not impair quality of life, and having better glycemic control is associated with better quality of life. Complications of diabetes are the most important disease-specific determinant of quality of life. Numerous demographic and psychosocial factors influence quality of life and should be controlled when comparing subgroups. Studies of clinical and educational interventions suggest that improving patients' health status and perceived ability to control their disease results in improved quality of life. Methodologically, it is important to use multidimensional assessments of quality of life, and to include both generic and disease-specific measures. Quality of life measures should be used to guide and evaluate treatment interventions.

Journal ArticleDOI
01 Jul 1999-Neuron
TL;DR: It is reported that Shank proteins also bind to Homer, and Shank may cross-link Homer and PSD-95 complexes in the PSD and play a role in the signaling mechanisms of both mGluRs and NMDA receptors.

Journal ArticleDOI
TL;DR: It is shown that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS), which indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.
Abstract: MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.

Journal ArticleDOI
TL;DR: Following sequential exposure of rats to two different environments or to the same environment twice, the proportion of CA1 neurons with cytoplasmic, nuclear or overlapping Arc expression profiles matched predictions derived from ensemble neurophysiological recordings of hippocampal neuronal ensembles.
Abstract: We used fluorescent in-situ hybridization and confocal microscopy to monitor the subcellular distribution of the immediate-early gene Arc. Arc RNA appeared in discrete intranuclear foci within minutes of neuronal activation and subsequently disappeared from the nucleus and accumulated in the cytoplasm by 30 minutes. The time course of nuclear versus cytoplasmic Arc RNA accumulation was distinct, and could therefore be used to infer the activity history of individual neurons at two times. Following sequential exposure of rats to two different environments or to the same environment twice, the proportion of CA1 neurons with cytoplasmic, nuclear or overlapping Arc expression profiles matched predictions derived from ensemble neurophysiological recordings of hippocampal neuronal ensembles. Arc gene induction is thus specifically linked to neural encoding processes.

Journal ArticleDOI
TL;DR: The current models of NMD that have been generated during the study of model organisms and mammalian cells are presented and the physiological burden of nonsense transcripts and the emerging view that NMD plays a broad and critical role in the regulation of gene expression are discussed.
Abstract: All eukaryotes possess the ability to detect and degrade transcripts harboring premature signals for the termination of translation. Despite the ubiquitous nature of nonsense-mediated mRNA decay (NMD) and its demonstrated role in the modulation of phenotypes resulting from selected nonsense alleles, very little is known regarding its basic mechanism or the selective pressure for complete evolutionary conservation of this function. This review will present the current models of NMD that have been generated during the study of model organisms and mammalian cells. The physiological burden of nonsense transcripts and the emerging view that NMD plays a broad and critical role in the regulation of gene expression will also be discussed. Such issues are relevant to the proposal that pharmacological manipulation of NMD will find therapeutic application.

Journal ArticleDOI
01 Jul 1999-Neuron
TL;DR: A novel family of postsynaptic density proteins, termed Shank, that binds via its PDZ domain to the C terminus of PSD-95-associated protein GKAP, and may function as a scaffold protein in the PSD, potentially cross-linking NMDA receptor/PSD- 95 complexes and coupling them to regulators of the actin cytoskeleton.

Journal ArticleDOI
TL;DR: These findings, together with cell death patterns in PARP(-/-) animals receiving other types of insults, indicate that PARP activation is an active trigger of necrosis, whereas other mechanisms mediate apoptosis.
Abstract: Apoptotic and necrotic cell death are well characterized and are influenced by intracellular ATP levels. Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme activated by DNA strand breaks, physiologically participates in DNA repair. Overactivation of PARP after cellular insults can lead to cell death caused by depletion of the enzyme’s substrate β-nicotinamide adenine dinucleotide and of ATP. In this study, we have differentially elicited apoptosis or necrosis in mouse fibroblasts. Fibroblasts from PARP-deficient (PARP−/−) mice are protected from necrotic cell death and ATP depletion but not from apoptotic death. These findings, together with cell death patterns in PARP−/− animals receiving other types of insults, indicate that PARP activation is an active trigger of necrosis, whereas other mechanisms mediate apoptosis.

Journal ArticleDOI
07 Oct 1999-Nature
TL;DR: An improved approach to the generation of human somatic-cell knockouts is described, which is used to generate human colorectal cancer cells in which both 14-3-3σ alleles are inactivated, and results may indicate a mechanism for maintaining the G2 checkpoint and preventing mitotic death.
Abstract: 14-3-3Sigma is a member of a family of proteins that regulate cellular activity by binding and sequestering phosphorylated proteins. It has been suggested that 14-3-3sigma promotes pre-mitotic cell-cycle arrest following DNA damage, and that its expression can be controlled by the p53 tumour suppressor gene. Here we describe an improved approach to the generation of human somatic-cell knockouts, which we have used to generate human colorectal cancer cells in which both 14-3-3sigma alleles are inactivated. After DNA damage, these cells initially arrested in the G2 phase of the cell cycle, but, unlike cells containing 14-3-3sigma, the 14-3-3sigma-/- cells were unable to maintain cell-cycle arrest. The 14-3-3sigma-/- cells died ('mitotic catastrophe') as they entered mitosis. This process was associated with a failure of the 14-3-3sigma-deficient cells to sequester the proteins (cyclin B1 and cdc2) that initiate mitosis and prevent them from entering the nucleus. These results may indicate a mechanism for maintaining the G2 checkpoint and preventing mitotic death.

Journal ArticleDOI
30 Apr 1999-Science
TL;DR: In eukaryotic cells directional sensing is mediated by heterotrimeric guanine nucleotide-binding protein (G protein)-linked signaling pathways and the cell senses direction by spatially regulating the activity of the signal transduction pathway.
Abstract: In eukaryotic cells directional sensing is mediated by heterotrimeric guanine nucleotide-binding protein (G protein)-linked signaling pathways. In Dictyostelium discoideum amoebae and mammalian leukocytes, the receptors and G-protein subunits are uniformly distributed around the cell perimeter. Chemoattractants induce the transient appearance of binding sites for several pleckstrin homology domain-containing proteins on the inner face of the membrane. In gradients of attractant these sites are persistently present on the side of the cell facing the higher concentration, even in the absence of a functional actin cytoskeleton or cell movement. Thus, the cell senses direction by spatially regulating the activity of the signal transduction pathway.

Journal ArticleDOI
TL;DR: The hypothesis was that the virologic response to HAART would be substantially worse among unselected patients in an inner-city clinic than among patients enrolled in clinical trials, and this study analyzed data from a cohort of protease inhibitor-naive patients in whom HAART was initiated in the clinic between March 1996 and February 1998.
Abstract: Unselected patients in whom highly active antiretroviral therapy is started in a clinic setting achieve viral suppression substantially less frequently than do patients in controlled clinical trial...

Journal ArticleDOI
17 Dec 1999-Science
TL;DR: Overexpression of Bcl-2 reduced the death-promoting effects of CREB inhibition and supported a model in which neurotrophins promote survival of neurons, in part through a mechanism involving CREB family transcription factor-dependent expression of genes encoding prosurvival factors.
Abstract: Nerve growth factor (NGF) and other neurotrophins support survival of neurons through processes that are incompletely understood. The transcription factor CREB is a critical mediator of NGF-dependent gene expression, but whether CREB family transcription factors regulate expression of genes that contribute to NGF-dependent survival of sympathetic neurons is unknown. CREB-mediated gene expression was both necessary for NGF-dependent survival and sufficient on its own to promote survival of sympathetic neurons. Moreover, expression of Bcl-2 was activated by NGF and other neurotrophins by a CREB-dependent transcriptional mechanism. Overexpression of Bcl-2 reduced the death-promoting effects of CREB inhibition. Together, these data support a model in which neurotrophins promote survival of neurons, in part through a mechanism involving CREB family transcription factor-dependent expression of genes encoding prosurvival factors.

Journal ArticleDOI
TL;DR: The second article on evidence-based statistics explores the inductive Bayesian approach to measuring evidence and combining information and addresses the epistemologic uncertainties that affect beliefs in the absence of evidence.
Abstract: The second article on evidence-based statistics explores the inductive Bayesian approach to measuring evidence and combining information and addresses the epistemologic uncertainties that affect al...

Journal ArticleDOI
11 Jun 1999-Science
TL;DR: The results suggest that CA1 hippocampal LTP is controlled by the number or subunit composition of AMPA receptors and show a dichotomy between LTP in CA1 and acquisition of spatial memory.
Abstract: Gene-targeted mice lacking the L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR-A exhibited normal development, life expectancy, and fine structure of neuronal dendrites and synapses. In hippocampal CA1 pyramidal neurons, GluR-A-/- mice showed a reduction in functional AMPA receptors, with the remaining receptors preferentially targeted to synapses. Thus, the CA1 soma-patch currents were strongly reduced, but glutamatergic synaptic currents were unaltered; and evoked dendritic and spinous Ca2+ transients, Ca2+-dependent gene activation, and hippocampal field potentials were as in the wild type. In adult GluR-A-/- mice, associative long-term potentiation (LTP) was absent in CA3 to CA1 synapses, but spatial learning in the water maze was not impaired. The results suggest that CA1 hippocampal LTP is controlled by the number or subunit composition of AMPA receptors and show a dichotomy between LTP in CA1 and acquisition of spatial memory.

Journal ArticleDOI
TL;DR: Simulation of voltage-clamp Ca2+ transients indicates that such changes are sufficient to account for the reduced amplitude, altered shape, and slowed relaxation of Ca2- transients in the failing canine heart.
Abstract: Pacing-induced heart failure in the dog recapitulates many of the electrophysiological and hemodynamic abnormalities of the human disease; however, the mechanisms underlying altered Ca2+ handling have not been investigated in this model. We now show that left ventricular midmyocardial myocytes isolated from dogs subjected to 3 to 4 weeks of rapid pacing have prolonged action potentials and Ca2+ transients with reduced peaks, but durations approximately 3-fold longer than controls. To discriminate between action potential effects on Ca2+ kinetics and direct changes in Ca2+ regulatory processes, voltage-clamp steps were used to examine the time constant for cytosolic Ca2+ removal (tauCa). tauCa was prolonged by just 35% in myocytes from failing hearts after fixed voltage steps in physiological solutions (tauCa control, 216+/-25 ms, n=17; tauCa failing, 292+/-23 ms, n=22; P<0.05), but this difference was markedly accentuated when Na+/Ca2+ exchange was eliminated (tauCa control, 282+/-30 ms, n=13; tauCa failing, 576+/-83 ms, n=11; P<0. 005). Impaired sarcoplasmic reticular (SR) Ca2+ uptake and a greater dependence on Na+/Ca2+ exchange for cytosolic Ca2+ removal was confirmed by inhibiting SR Ca2+ ATPase with cyclopiazonic acid, which slowed Ca2+ removal more in control than in failing myocytes. beta-Adrenergic stimulation of SR Ca2+ uptake in cells from failing hearts sufficed only to accelerate tauCa to the range of unstimulated controls. Protein levels of SERCA2a, phospholamban, and Na+/Ca2+ exchanger revealed a pattern of changes qualitatively similar to the functional measurements; SERCA2a and phospholamban were both reduced in failing hearts by 28%, and Na+/Ca2+ exchange protein was increased 104% relative to controls. Thus, SR Ca2+ uptake is markedly downregulated in failing hearts, but this defect is partially compensated by enhanced Na+/Ca2+ exchange. The alterations are similar to those reported in human heart failure, which reinforces the utility of the pacing-induced dog model as a surrogate for the human disease.

Journal ArticleDOI
01 Mar 1999-Neuron
TL;DR: It is found that overexpression of mutant, Ca2+ -insensitive calmodulin (CaM) ablates Ca2- -dependent inactivation in a "dominant-negative" manner, demonstrating that CaM is the actual Ca 2+ sensor for inactivation and suggesting that Ca M is constitutively tethered to the channel complex.

Journal ArticleDOI
TL;DR: Molecular biologists ought to respect the original definition of synteny and its etymological derivation, especially as this term is still needed to refer to genes located on the same chromosome.
Abstract: nature genetics • volume 23 • december 1999 387 The term ‘synteny’ (or syntenic) refers to gene loci on the same chromosome regardless of whether or not they are genetically linked by classic linkage analysis1. This term was introduced in 1971 by John H. Renwick, of the London School of Hygiene and Tropical Medicine, at the 4th Internal Congress of Human Genetics in Paris with one of us (E.P.) in attendance. The need for such a term was suggested to J.H. Renwick by E.A. Murphy, of Johns Hopkins University2. It arose as a consequence of the new methods in gene mapping using somatic cell hybrid cells. Human genes located on the same chromosome with a genetic distance that could not be determined by the frequency of recombination lacked a term of reference. ‘Synteny’ means ‘same thread’ (or ribbon), a state of being together in location, as synchrony would be together in time. Although several textbooks3–10 and other reference works11–15 give a correct definition, the term synteny nowadays is often used to refer to gene loci in different organisms located on a chromosomal region of common evolutionary ancestry. This new usage of the term synteny does not correspond to its original definition and correct language derivation. A survey of 11 articles in Nature Genetics since 1992 using the term syntenic or synteny in either the title or the abstract revealed usage incorrect in 8 and ambiguous in 3. We believe molecular biologists ought to respect the original definition of synteny and its etymological derivation, especially as this term is still needed to refer to genes located on the same chromosome. We recognize the need to refer to gene loci of common ancestry. Correct terms exist: ‘paralogous’ for genes that arose from a common ancestor gene within one species and ‘orthologous’ for the same gene in different species. Eberhard Passarge1, Bernhard Horsthemke1 & Rosann A. Farber2 1Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany. 2Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. Correspondence should be addressed to E.P. (e-mail: eberhard.passarge@uni-essen.de).