scispace - formally typeset
Search or ask a question
Institution

National Institute of Advanced Industrial Science and Technology

GovernmentTsukuba, Ibaraki, Japan
About: National Institute of Advanced Industrial Science and Technology is a government organization based out in Tsukuba, Ibaraki, Japan. It is known for research contribution in the topics: Catalysis & Thin film. The organization has 22114 authors who have published 65856 publications receiving 1669827 citations. The organization is also known as: Sangyō Gijutsu Sōgō Kenkyū-sho.
Topics: Catalysis, Thin film, Carbon nanotube, Laser, Hydrogen


Papers
More filters
Journal ArticleDOI
TL;DR: New insights are discussed into the possible pathophysiological roles of those new BDNF subtypes as well as recent findings on the role of BDNF mediated neuronal plasticity in mood disorders and their treatments.

257 citations

Journal ArticleDOI
TL;DR: It is shown that the heat stress response is finely regulated by activation and repression activities of Hsfs in Arabidopsis and that HsfB1 and HSFB2b suppress the general heat shock response under non-heat-stress conditions and in the attenuating period.
Abstract: Many eukaryotes have from one to three heat shock factors (Hsfs), but plants have more than 20 Hsfs, designated class A, B, and C. Class A Hsfs are activators of transcription, but details of the roles of individual Hsfs have not been fully characterized. We show here that Arabidopsis (Arabidopsis thaliana) HsfB1 and HsfB2b, members of class B, are transcriptional repressors and negatively regulate the expression of heat-inducible Hsfs (HsfA2, HsfA7a, HsfB1, and HsfB2b) and several heat shock protein genes. In hsfb1 hsfb2b double mutant plants, the expression of a large number of heat-inducible genes was enhanced in the non-heat condition (23°C) and the plants exhibited slightly higher heat tolerance at 42°C than the wild type, similar to Pro35S:HsfA2 plants. In addition, under extended heat stress conditions, expression of the heat-inducible Hsf genes remained consistently higher in hsfb1 hsfb2b than in the wild type. These data indicate that HsfB1 and HsfB2b suppress the general heat shock response under non-heat-stress conditions and in the attenuating period. On the other hand, HsfB1 and HsfB2b appear to be necessary for the expression of heat stress-inducible heat shock protein genes under heat stress conditions, which is necessary for acquired thermotolerance. We show that the heat stress response is finely regulated by activation and repression activities of Hsfs in Arabidopsis.

257 citations

Journal ArticleDOI
TL;DR: Volcanic sediments, broadly defined as clastic deposits derived from the transport, deposition and/or redeposition of the products of volcanic activity, have long been a Cinderella of the geosciences as discussed by the authors.

257 citations

Journal ArticleDOI
27 Feb 2009-Langmuir
TL;DR: Results suggest that the synergetic combination of high densities of the functional groups bonded to amorphous carbon causes the efficient hydrolysis of beta-1,4-glucan, including cellulose, on the carbon material.
Abstract: The reaction mechanism of the hydrolysis of cellulose by a carbon-based solid acid, amorphous carbon containing graphene sheets bearing SO(3)H, COOH, and phenolic OH groups, has been investigated in detail through the hydrolysis of water-soluble beta-1,4-glucan. Whereas a range of solid strong Bronsted acid catalysts (inorganic oxides with acidic OH groups, SO(3)H-bearing resins, and the carbon-based solid acid) can hydrolyze the beta-1,4-glycosidic bonds in cellobiose (the shortest water-soluble beta-1,4-glucan), the tested solid acids except for the carbon material, consisting of conventional solid acids, cannot function as effective catalysts for the hydrolysis of cellohexaose (a long-chain water-soluble beta-1,4-glucan). However, the carbon material exhibits remarkable catalytic performance for the hydrolysis of cellohexaose: the turnover frequency (TOF) of SO(3)H groups in the carbon material exceeds ca. 20 times those of the conventional solid acids, reaching that of sulfuric acid, which is the most active catalyst. Experimental results revealed that inorganic oxides with acidic OH groups are not acidic enough to decompose the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules aggregated by strong hydrogen bonds as well as cellulose and that the SO(3)H groups of the resins that do not adsorb beta-1,4-glucan are unable to attack the hydrogen and beta-1,4-glycosidic bonds in cellohexaose molecules effectively. In contrast, the carbon material is capable of adsorbing beta-1,4-glucan by phenolic OH or COOH groups in the carbon material, and SO(3)H groups bonded to the carbon therefore function as effective active sites for both decomposing the hydrogen bonds and hydrolyzing the beta-1,4-glycosidic bonds in the adsorbed long-chain water-soluble beta-1,4-glucan aggregate. These results suggest that the synergetic combination of high densities of the functional groups bonded to amorphous carbon causes the efficient hydrolysis of beta-1,4-glucan, including cellulose, on the carbon material.

257 citations

Journal ArticleDOI
TL;DR: New crown-appended cholesterol-based organogelator 1, which has two cholesterol skeletons as a chiral aggregate-forming site, two amino groups as an acidic proton-binding site, and one crown moiety as a cation- binding site, was synthesized, and the gelation ability was evaluated in organic solvents.
Abstract: New crown-appended cholesterol-based organogelator 1, which has two cholesterol skeletons as a chiral aggregate-forming site, two amino groups as an acidic proton-binding site, and one crown moiety as a cation-binding site, was synthesized, and the gelation ability was evaluated in organic solvents. It can gelate acetic acid, acetonitrile, acetone, ethanol, 1-butanol, 1-hexanol, DMSO, and DMF under 1.0 wt %, indicating that 1 acts as a versatile gelator of various organic solvents. To characterize the aggregation mode in the organogel system, we observed a CD spectrum of the acetic acid gel 1. In the CD spectrum, the λθ=0 value appears at 353 nm, which is the same as the absorption maximum λmax = 353 nm. The positive sign for the first Cotton effect indicates that the dipole moments of azobenzene chromophores tend to orient in a clockwise direction. Very surprisingly, the TEM images of the 1 + acetic acid gel resulted in the helical ribbon and the tubular structures. Sol−gel polymerization of tetraethoxys...

256 citations


Authors

Showing all 22289 results

NameH-indexPapersCitations
Takeo Kanade147799103237
Ferenc A. Jolesz14363166198
Michele Parrinello13363794674
Kazunari Domen13090877964
Hideo Hosono1281549100279
Hideyuki Okano128116967148
Kurunthachalam Kannan12682059886
Shaobin Wang12687252463
Ajit Varki12454258772
Tao Zhang123277283866
Ramamoorthy Ramesh12264967418
Kazuhito Hashimoto12078161195
Katsuhiko Mikoshiba12086662394
Qiang Xu11758550151
Yoshinori Tokura11785870258
Network Information
Related Institutions (5)
Tohoku University
170.7K papers, 3.9M citations

93% related

University of Tokyo
337.5K papers, 10.1M citations

93% related

Osaka University
185.6K papers, 5.1M citations

93% related

Hokkaido University
115.4K papers, 2.6M citations

93% related

Nagoya University
128.2K papers, 3.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022265
20213,064
20203,389
20193,257
20183,181