scispace - formally typeset
Open AccessJournal ArticleDOI

Medulloblastoma Comprises Four Distinct Molecular Variants

TLDR
The authors' integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome.
Abstract
Purpose Recent genomic approaches have suggested the existence of multiple distinct subtypes of medulloblastoma. We studied a large cohort of medulloblastomas to determine how many subgroups of the disease exist, how they differ, and the extent of overlap between subgroups. Methods We determined gene expression profiles and DNA copy number aberrations for 103 primary medulloblastomas. Bioinformatic tools were used for class discovery of medulloblastoma subgroups based on the most informative genes in the data set. Immunohistochemistry for subgroup-specific signature genes was used to determine subgroup affiliation for 294 nonoverlapping medulloblastomas on two independent tissue microarrays. Results Multiple unsupervised analyses of transcriptional profiles identified the following four distinct, nonoverlapping molecular variants: WNT, SHH, group C, and group D. Supervised analysis of these four subgroups revealed significant subgroup-specific demographics, histology, metastatic status, and DNA copy number aberrations. Immunohistochemistry for DKK1 (WNT), SFRP1 (SHH), NPR3 (group C), and KCNA1 (group D) could reliably and uniquely classify formalin-fixed medulloblastomas in approximately 98% of patients. Group C patients (NPR3-positive tumors) exhibited a significantly diminished progression-free and overall survival irrespective of their metastatic status. Conclusion Our integrative genomics approach to a large cohort of medulloblastomas has identified four disparate subgroups with distinct demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome. Medulloblastomas can be reliably assigned to subgroups through immunohistochemistry, thereby making medulloblastoma subclassification widely available. Future research on medulloblastoma and the development of clinical trials should take into consideration these four distinct types of medulloblastoma.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Dissecting the genomic complexity underlying medulloblastoma

David T.W. Jones, +99 more
- 02 Aug 2012 - 
TL;DR: An integrative deep-sequencing analysis of 125 tumour–normal pairs enhances the understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provides several potential targets for new therapeutics, especially for Group 3 and 4 patients.
References
More filters
Journal ArticleDOI

Diagnosis of multiple cancer types by shrunken centroids of gene expression

TL;DR: The method of “nearest shrunken centroids” identifies subsets of genes that best characterize each class, which was highly efficient in finding genes for classifying small round blue cell tumors and leukemias.
Journal ArticleDOI

Metagenes and molecular pattern discovery using matrix factorization.

TL;DR: Nonnegative matrix factorization is described, an algorithm based on decomposition by parts that can reduce the dimension of expression data from thousands of genes to a handful of metagenes, and found less sensitive to a priori selection of genes or initial conditions and able to detect alternative or context-dependent patterns of gene expression in complex biological systems.
Related Papers (5)

Subgroup-specific structural variation across 1,000 medulloblastoma genomes

Paul A. Northcott, +139 more
- 02 Aug 2012 -