scispace - formally typeset
Open AccessJournal ArticleDOI

Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors.

Reads0
Chats0
TLDR
In this paper, the authors demonstrate self-adaptive spike-time-dependent plasticity (STDP) behavior that ensures selfadaptation of the average memristor conductance, making the plasticity stable and insensitive to the initial state of the devices.
Abstract
Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses – the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses (“spikes”) in biological neural systems, it is crucial for memristive synapses to support the spike-time-dependent plasticity (STDP). A major challenge for the STDP implementation is that, in contrast to some simplistic models of the plasticity, the elementary change of a synaptic weight in an artificial hardware synapse depends not only on the pre-synaptic and post-synaptic signals, but also on the initial weight (memristor’s conductance) value. Here we experimentally demonstrate, for the first time, an STDP behavior that ensures self-adaptation of the average memristor conductance, making the plasticity stable, i.e. insensitive to the initial state of the devices. The experiments have been carried out with 200-nm Al2O3/TiO2−x memristors integrated into 12 × 12 crossbars. The experimentally observed self-adaptive STDP behavior has been complemented with numerical modeling of weight dynamics in a simple system with a leaky-integrate-and-fire neuron with a random spike-train input, using a compact model of memristor plasticity, fitted for quantitatively correct description of our memristors.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Neuromorphic computing using non-volatile memory

TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Journal ArticleDOI

Recommended Methods to Study Resistive Switching Devices

TL;DR: This manuscript describes the most recommendable methodologies for the fabrication, characterization, and simulation of RS devices, as well as the proper methods to display the data obtained.
Journal ArticleDOI

Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications

TL;DR: Recent progress in the area of resistive random access memory (RRAM) technology which is considered one of the most standout emerging memory technologies owing to its high speed, low cost, enhanced storage density, potential applications in various fields, and excellent scalability is comprehensively reviewed.
Journal ArticleDOI

Memristor with Ag-Cluster-Doped TiO2 Films as Artificial Synapse for Neuroinspired Computing

TL;DR: In this paper, a self-assembled Ag nanoclusters implemented by gradient Ag dopant are employed to achieve enhanced memristor performance, which exhibits gradual both potentiating and depressing conduction under positive and negative pulse trains.
References
More filters
Book

The organization of behavior

D. O. Hebb
Journal ArticleDOI

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

TL;DR: The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Journal ArticleDOI

Nanoscale Memristor Device as Synapse in Neuromorphic Systems

TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Journal ArticleDOI

A million spiking-neuron integrated circuit with a scalable communication network and interface

TL;DR: Inspired by the brain’s structure, an efficient, scalable, and flexible non–von Neumann architecture is developed that leverages contemporary silicon technology and is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification.
Journal ArticleDOI

Memristive devices for computing

TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Related Papers (5)