scispace - formally typeset
Open AccessJournal ArticleDOI

The Tomato Terpene Synthase Gene Family

TLDR
In this paper, it was shown that the tomato genome contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional in at least some organs or tissues of the plant.
Abstract
Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

More is better: the diversity of terpene metabolism in plants.

TL;DR: A major theme is the much greater number of substrates that can be used by enzymes belonging to the terpene synthase family, and other recent discoveries include non-TPS enzymes that catalyze the formation of terpenes, and novel transport mechanisms.
Journal ArticleDOI

The Eucalyptus terpene synthase gene family

TL;DR: The data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought and the possibility of stress induction needs further investigation.
Journal ArticleDOI

Making new molecules - evolution of pathways for novel metabolites in plants.

TL;DR: A review of recent progress in understanding the evolution of clustered and dispersed pathways for new secondary metabolites in plants finds that genomics and systems biology are beginning to yield the first insights into network evolution in plant metabolism.
Journal ArticleDOI

Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism

TL;DR: Examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism are discussed to provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.
Journal ArticleDOI

The rise of operon-like gene clusters in plants.

TL;DR: An overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation is provided and the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science are pointed out.
References
More filters
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Journal ArticleDOI

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0

TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.
Journal ArticleDOI

Multiple sequence alignment with the Clustal series of programs

TL;DR: The Clustal series of programs, widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees, are extended.
Journal ArticleDOI

The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

Gerald A. Tuskan, +115 more
- 15 Sep 2006 - 
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Journal ArticleDOI

The map-based sequence of the rice genome

Takashi Matsumoto, +265 more
- 11 Aug 2005 - 
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Related Papers (5)