scispace - formally typeset
Open AccessJournal ArticleDOI

The Tomato Terpene Synthase Gene Family

TLDR
In this paper, it was shown that the tomato genome contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional in at least some organs or tissues of the plant.
Abstract
Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Evolution of Terpene Synthases in Orchidaceae.

TL;DR: A characterization and phylogeny of terpene synthases (TPSs) from four different species with whole genome sequences is available in this paper, and the duplicated copies are increased in derived orchid species compared to that in the early divergence orchid, A. shenzhenica.
Journal ArticleDOI

Genome-wide identification and expression analysis of terpene synthase gene family in Aquilaria sinensis

TL;DR: The TPS gene family was identified and characterized in Aquilaria sinensis by bioinformatics methods and expression analysis revealed seven TPS genes encoding sesquiterpene synthetases were induced by wounding and methyl jasmonic acid (MeJA), which may be related to sesQuiterpenes biosynthesis.
Journal ArticleDOI

De novo Transcriptome Characterization of Rhodomyrtus tomentosa Leaves and Identification of Genes Involved in α/β-Pinene and β-Caryophyllene Biosynthesis.

TL;DR: 7 candidate genes encoding terpene synthase (RtTPS1-7) that potentially catalyze the last step in pinene and caryophyllene biosynthesis were further characterized and deepen the understanding of molecular mechanisms of terpenes biosynthesis in Myrtaceae.
Journal ArticleDOI

cis-Jasmone primes defense pathways in tomato via emission of volatile organic compounds and regulation of genes with consequences for Spodoptera exigua oviposition

TL;DR: Results indicate that CJ treatment followed by caterpillar infestation can prime tomato plant defense with potential ramifications for insect oviposition.
Journal ArticleDOI

Identification and characterization of two sesquiterpene synthase genes involved in volatile-mediated defense in tea plant (Camellia sinensis).

TL;DR: It is shown that two novel sesquiterpene synthase genes CsAFR and CsNSE2 are inducible by herbivory and responsible for the elevated emission of herbivore-induced (E, E)-α-farnesene and (E)-nerolidol, which are implicated in tea plant defense against herbivores.
References
More filters
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Journal ArticleDOI

MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0

TL;DR: Version 4 of MEGA software expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary hypotheses.
Journal ArticleDOI

Multiple sequence alignment with the Clustal series of programs

TL;DR: The Clustal series of programs, widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees, are extended.
Journal ArticleDOI

The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)

Gerald A. Tuskan, +115 more
- 15 Sep 2006 - 
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Journal ArticleDOI

The map-based sequence of the rice genome

Takashi Matsumoto, +265 more
- 11 Aug 2005 - 
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Related Papers (5)