scispace - formally typeset
Search or ask a question

Showing papers on "Genome published in 2004"


Journal ArticleDOI
TL;DR: A knowledge-based approach for network prediction is developed, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes.
Abstract: A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database.

4,084 citations


Journal ArticleDOI
21 Oct 2004-Nature
TL;DR: The current human genome sequence (Build 35) as discussed by the authors contains 2.85 billion nucleotides interrupted by only 341 gaps and is accurate to an error rate of approximately 1 event per 100,000 bases.
Abstract: The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.

3,989 citations


Journal ArticleDOI
TL;DR: This work presents methods for identification and alignment of conserved genomic DNA in the presence of rearrangements and horizontal transfer and evaluated the quality of Mauve alignments and drawn comparison to other methods through extensive simulations of genome evolution.
Abstract: As genomes evolve, they undergo large-scale evolutionary processes that present a challenge to sequence comparison not posed by short sequences. Recombination causes frequent genome rearrangements, horizontal transfer introduces new sequences into bacterial chromosomes, and deletions remove segments of the genome. Consequently, each genome is a mosaic of unique lineage-specific segments, regions shared with a subset of other genomes and segments conserved among all the genomes under consideration. Furthermore, the linear order of these segments may be shuffled among genomes. We present methods for identification and alignment of conserved genomic DNA in the presence of rearrangements and horizontal transfer. Our methods have been implemented in a software package called Mauve. Mauve has been applied to align nine enterobacterial genomes and to determine global rearrangement structure in three mammalian genomes. We have evaluated the quality of Mauve alignments and drawn comparison to other methods through extensive simulations of genome evolution.

3,741 citations


Journal ArticleDOI
TL;DR: A 'census' of cancer genes is conducted that indicates that mutations in more than 1% of genes contribute to human cancer.
Abstract: A central aim of cancer research has been to identify the mutated genes that are causally implicated in oncogenesis ('cancer genes'). After two decades of searching, how many have been identified and how do they compare to the complete gene set that has been revealed by the human genome sequence? We have conducted a 'census' of cancer genes that indicates that mutations in more than 1% of genes contribute to human cancer. The census illustrates striking features in the types of sequence alteration, cancer classes in which oncogenic mutations have been identified and protein domains that are encoded by cancer genes.

3,136 citations


Journal ArticleDOI
TL;DR: This article identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals, and revealed that half of these regions overlap with genes, and many coincide with segmental duplications or gaps in human genome assembly.
Abstract: We identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals. Twenty-four variants are present in > 10% of the individuals that we examined. Half of these regions overlap with genes, and many coincide with segmental duplications or gaps in the human genome assembly. This previously unappreciated heterogeneity may underlie certain human phenotypic variation and susceptibility to disease and argues for a more dynamic human genome structure.

2,937 citations


Journal ArticleDOI
LaDeana W. Hillier1, Webb Miller2, Ewan Birney, Wesley C. Warren1  +171 moreInstitutions (39)
09 Dec 2004-Nature
TL;DR: A draft genome sequence of the red jungle fowl, Gallus gallus, provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes.
Abstract: We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.

2,579 citations


Journal ArticleDOI
TL;DR: The SNAP gene finder is introduced which has been designed to be easily adaptable to a variety of genomes and finds that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate.
Abstract: Background Computational gene prediction continues to be an important problem, especially for genomes with little experimental data.

2,315 citations


Journal ArticleDOI
02 Sep 2004-Nature
TL;DR: An initial map of yeast's transcriptional regulatory code is constructed by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species.
Abstract: DNA-binding transcriptional regulators interpret the genome's regulatory code by binding to specific sequences to induce or repress gene expression. Comparative genomics has recently been used to identify potential cis-regulatory sequences within the yeast genome on the basis of phylogenetic conservation, but this information alone does not reveal if or when transcriptional regulators occupy these binding sites. We have constructed an initial map of yeast's transcriptional regulatory code by identifying the sequence elements that are bound by regulators under various conditions and that are conserved among Saccharomyces species. The organization of regulatory elements in promoters and the environment-dependent use of these elements by regulators are discussed. We find that environment-specific use of regulatory elements predicts mechanistic models for the function of a large population of yeast's transcriptional regulators.

2,304 citations


Journal ArticleDOI
TL;DR: A modification ofbinary segmentation is developed, which is called circular binary segmentation, to translate noisy intensity measurements into regions of equal copy number in DNA sequence copy number.
Abstract: DNA sequence copy number is the number of copies of DNA at a region of a genome. Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultaneous measurement of copy number at thousands of sites in a genome. We have developed a modification of binary segmentation, which we call circular binary segmentation, to translate noisy intensity measurements into regions of equal copy number. The method is evaluated by simulation and is demonstrated on cell line data with known copy number alterations and on a breast cancer cell line data set.

2,269 citations


Journal ArticleDOI
TL;DR: Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community.
Abstract: Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na+(Li+)/H+ antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.

2,224 citations


Journal ArticleDOI
04 Mar 2004-Nature
TL;DR: Reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II and analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
Abstract: Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.

Journal ArticleDOI
TL;DR: It is strongly suggested that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAAs ('exonic' and 'intronic') identified here may require slightly different mechanisms of biogenesis.
Abstract: To derive a global perspective on the transcription of microRNAs (miRNAs) in mammals, we annotated the genomic position and context of this class of noncoding RNAs (ncRNAs) in the human and mouse genomes. Of the 232 known mammalian miRNAs, we found that 161 overlap with 123 defined transcription units (TUs). We identified miRNAs within introns of 90 protein-coding genes with a broad spectrum of molecular functions, and in both introns and exons of 66 mRNA-like noncoding RNAs (mlncRNAs). In addition, novel families of miRNAs based on host gene identity were identified. The transcription patterns of all miRNA host genes were curated from a variety of sources illustrating spatial, temporal, and physiological regulation of miRNA expression. These findings strongly suggest that miRNAs are transcribed in parallel with their host transcripts, and that the two different transcription classes of miRNAs (`exonic' and `intronic') identified here may require slightly different mechanisms of biogenesis.

Journal ArticleDOI
TL;DR: The VISTA family of tools created to assist biologists in carrying out comparative analysis of DNA sequences is described and capabilities of the site are illustrated by the analysis of a 180 kb interval on human chromosome 5 that encodes for the kinesin family member 3A (KIF3A) protein.
Abstract: Comparison of DNA sequences from different species is a fundamental method for identifying functional elements in genomes. Here, we describe the VISTA family of tools created to assist biologists in carrying out this task. Our first VISTA server at http://www-gsd.lbl.gov/vista/ was launched in the summer of 2000 and was designed to align long genomic sequences and visualize these alignments with associated functional annotations. Currently the VISTA site includes multiple comparative genomics tools and provides users with rich capabilities to browse pre-computed whole-genome alignments of large vertebrate genomes and other groups of organisms with VISTA Browser, to submit their own sequences of interest to several VISTA servers for various types of comparative analysis and to obtain detailed comparative analysis results for a set of cardiovascular genes. We illustrate capabilities of the VISTA site by the analysis of a 180 kb interval on human chromosome 5 that encodes for the kinesin family member 3A (KIF3A) protein.

Journal ArticleDOI
01 Apr 2004-Nature
TL;DR: This first comprehensive analysis of the genome sequence of the Brown Norway (BN) rat strain is reported, which is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution.
Abstract: The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

Journal ArticleDOI
21 Oct 2004-Nature
TL;DR: Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish, and reconstructs much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
Abstract: Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.

Journal ArticleDOI
12 Mar 2004-Science
TL;DR: Mobile elements within genomes have driven genome evolution in diverse ways and are becoming useful tools for learning more about genome evolution and gene function.
Abstract: Mobile elements within genomes have driven genome evolution in diverse ways. Particularly in plants and mammals, retrotransposons have accumulated to constitute a large fraction of the genome and have shaped both genes and the entire genome. Although the host can often control their numbers, massive expansions of retrotransposons have been tolerated during evolution. Now mobile elements are becoming useful tools for learning more about genome evolution and gene function.

Journal ArticleDOI
28 May 2004-Science
TL;DR: There are 481 segments longer than 200 base pairs that are absolutely conserved between orthologous regions of the human, rat, and mouse genomes, which represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserving between these species than are proteins.
Abstract: There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.

Journal ArticleDOI
01 Jul 2004-Nature
TL;DR: Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.
Abstract: Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.

Journal ArticleDOI
07 Mar 2004-Nature
TL;DR: It is shown that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication.
Abstract: Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.

Journal ArticleDOI
TL;DR: Genome sequences reveal that a deluge of DNA from organelle DNA has constantly been bombarding the nucleus since the origin of organelles, abolished organelle autonomy and increased nuclear complexity.
Abstract: Genome sequences reveal that a deluge of DNA from organelles has constantly been bombarding the nucleus since the origin of organelles. Recent experiments have shown that DNA is transferred from organelles to the nucleus at frequencies that were previously unimaginable. Endosymbiotic gene transfer is a ubiquitous, continuing and natural process that pervades nuclear DNA dynamics. This relentless influx of organelle DNA has abolished organelle autonomy and increased nuclear complexity.

Journal ArticleDOI
TL;DR: The purpose and mechanisms of the leading algorithms, with a particular emphasis on metazoan sequence analysis, are introduced and key issues that users should take into consideration in interpreting the results are identified.
Abstract: The compilation of multiple metazoan genome sequences and the deluge of large-scale expression data have combined to motivate the maturation of bioinformatics methods for the analysis of sequences that regulate gene transcription. Historically, these bioinformatics methods have been plagued by poor predictive specificity, but new bioinformatics algorithms that accelerate the identification of regulatory regions are drawing disgruntled users back to their keyboards. However, these new approaches and software are not without problems. Here, we introduce the purpose and mechanisms of the leading algorithms, with a particular emphasis on metazoan sequence analysis. We identify key issues that users should take into consideration in interpreting the results and provide an online training example to help researchers who wish to test online tools before taking an independent foray into the bioinformatics of transcription regulation.

Journal ArticleDOI
TL;DR: A detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression, localization, and general function of many family members confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.
Abstract: The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.

Journal ArticleDOI
20 Feb 2004-Cell
TL;DR: The human genome contains roughly comparable numbers of protein-coding and noncoding genes that are bound by common transcription factors and regulated by common environmental signals.

Journal ArticleDOI
24 Dec 2004-Science
TL;DR: This work constructed a series of high-density oligonucleotide tiling arrays representing sense and antisense strands of the entire nonrepetitive sequence of the human genome and found 10,595 transcribed sequences not detected by other methods.
Abstract: Elucidating the transcribed regions of the genome constitutes a fundamental aspect of human biology, yet this remains an outstanding problem. To comprehensively identify coding sequences, we constructed a series of high-density oligonucleotide tiling arrays representing sense and antisense strands of the entire nonrepetitive sequence of the human genome. Transcribed sequences were located across the genome via hybridization to complementary DNA samples, reverse-transcribed from polyadenylated RNA obtained from human liver tissue. In addition to identifying many known and predicted genes, we found 10,595 transcribed sequences not detected by other methods. A large fraction of these are located in intergenic regions distal from previously annotated genes and exhibit significant homology to other mammalian proteins.

Journal ArticleDOI
TL;DR: A gene map of the xMHC is presented and its content in relation to paralogy, polymorphism, immune function and disease is reviewed.
Abstract: The major histocompatibility complex (MHC) is the most important region in the vertebrate genome with respect to infection and autoimmunity, and is crucial in adaptive and innate immunity. Decades of biomedical research have revealed many MHC genes that are duplicated, polymorphic and associated with more diseases than any other region of the human genome. The recent completion of several large-scale studies offers the opportunity to assimilate the latest data into an integrated gene map of the extended human MHC. Here, we present this map and review its content in relation to paralogy, polymorphism, immune function and disease.

Journal ArticleDOI
TL;DR: This work presents a www server for AUGUSTUS, a novel software program for ab initio gene prediction in eukaryotic genomic sequences based on a generalized Hidden Markov Model with a new method for modeling the intron length distribution.
Abstract: We present a www server for AUGUSTUS, a novel software program for ab initio gene prediction in eukaryotic genomic sequences. Our method is based on a generalized Hidden Markov Model with a new method for modeling the intron length distribution. This method allows approximation of the true intron length distribution more accurately than do existing programs. For genomic sequence data from human and Drosophila melanogaster, the accuracy of AUGUSTUS is superior to existing gene-finding approaches. The advantage of our program becomes apparent especially for larger input sequences containing more than one gene. The server is available at http://augustus.gobics.de.

Journal ArticleDOI
08 Apr 2004-Nature
TL;DR: The results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.
Abstract: Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.

Journal ArticleDOI
10 Dec 2004-Science
TL;DR: A draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes is reported, which exceeds the estimated gene count for Drosophila melanogaster.
Abstract: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.

Journal ArticleDOI
TL;DR: A recently developed methodology for miRNA gene expression profiling based on the development of a microchip containing oligonucleotides corresponding to 245 miRNAs from human and mouse genomes is described.
Abstract: MicroRNAs (miRNAs) are a class of small noncoding RNA genes recently found to be abnormally expressed in several types of cancer. Here, we describe a recently developed methodology for miRNA gene expression profiling based on the development of a microchip containing oligonucleotides corresponding to 245 miRNAs from human and mouse genomes. We used these microarrays to obtain highly reproducible results that revealed tissue-specific miRNA expression signatures, data that were confirmed by assessment of expression by Northern blots, real-time RT-PCR, and literature search. The microchip oligolibrary can be expanded to include an increasing number of miRNAs discovered in various species and is useful for the analysis of normal and disease states.

Journal ArticleDOI
TL;DR: Recent lessons that have been learned from pathogenicity islands in pathogenic microorganisms are discussed and how they apply to the role of genomic islands in commensal, symbiotic and environmental bacteria are discussed.
Abstract: Horizontal gene transfer is an important mechanism for the evolution of microbial genomes. Pathogenicity islands — mobile genetic elements that contribute to rapid changes in virulence potential — are known to have contributed to genome evolution by horizontal gene transfer in many bacterial pathogens. Increasing evidence indicates that equivalent elements in non-pathogenic species — genomic islands — are important in the evolution of these bacteria, influencing traits such as antibiotic resistance, symbiosis and fitness, and adaptation in general. This review discusses the recent lessons that have been learned from pathogenicity islands in pathogenic microorganisms and how they apply to the role of genomic islands in commensal, symbiotic and environmental bacteria.