scispace - formally typeset
Search or ask a question

Showing papers on "Receptor published in 1999"


Journal Article
TL;DR: It is demonstrated that TLR4 is the gene product that regulates LPS response, and a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family is found.
Abstract: The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-κB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.

3,506 citations


Journal ArticleDOI
TL;DR: A number of 5-HT receptor ligands are currently utilised, or are in clinical development, to reduce the symptoms of CNS dysfunction and the functional responses attributed to each receptor in the brain are reviewed.

3,074 citations


Journal ArticleDOI
TL;DR: This work has shown that direct expression of PPAR mRNAs in the absence of a specific carrier gene results in down-regulation in the activity of other PPARs, and these properties are consistent with those of a “spatially aggregating substance”.
Abstract: I. Introduction II. Molecular Aspects A. PPAR isotypes: identity, genomic organization and chromosomal localization B. DNA binding properties C. PPAR ligand-binding properties D. Alternative pathways for PPAR activation E. PPAR-mediated transactivation properties III. Physiological Aspects A. Differential expression of PPAR mRNAs B. PPAR target genes and functions in fatty acid metabolism C. PPARs and control of inflammatory responses D. PPARs and atherosclerosis E. PPARs and the development of the fetal epidermal permeability barrier F. PPARs, carcinogenesis, and control of the cell cycle IV. Conclusions

3,028 citations


Journal ArticleDOI
TL;DR: Macrophages also play an important role in the recognition and clearance of apoptotic cells; a notable feature of this process is the absence of an inflammatory response.
Abstract: Phagocytosis of pathogens by macrophages initiates the innate immune response, which in turn orchestrates the adaptive response. In order to discriminate between infectious agents and self, macrophages have evolved a restricted number of phagocytic receptors, like the mannose receptor, that recognize conserved motifs on pathogens. Pathogens are also phagocytosed by complement receptors after relatively nonspecific opsonization with complement and by Fc receptors after specific opsonization with antibodies. All these receptors induce rearrangements in the actin cytoskeleton that lead to the internalization of the particle. However, important differences in the molecular mechanisms underlying phagocytosis by different receptors are now being appreciated. These include differences in the cytoskeletal elements that mediate ingestion, differences in vacuole maturation, and differences in inflammatory responses. Infectious agents, such as M. tuberculosis, Legionella pneumophila, and Salmonella typhimurium, enter macrophages via heterogeneous pathways and modify vacuolar maturation in a manner that favors their survival. Macrophages also play an important role in the recognition and clearance of apoptotic cells; a notable feature of this process is the absence of an inflammatory response.

2,774 citations


Journal ArticleDOI
TL;DR: This review focuses on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway.
Abstract: ▪ Abstract Caspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria. In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 wil...

2,579 citations


Journal ArticleDOI
TL;DR: An overview of the current status of research on the prostanoid receptors is given and domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified.
Abstract: Prostanoids are the cyclooxygenase metabolites of arachidonic acid and include prostaglandin (PG) D2, PGE2, PGF2α, PGI2, and thromboxne A2. They are synthesized and released upon cell stimulation and act on cells in the vicinity of their synthesis to exert their actions. Receptors mediating the actions of prostanoids were recently identified and cloned. They are G protein-coupled receptors with seven transmembrane domains. There are eight types and subtypes of prostanoid receptors that are encoded by different genes but as a whole constitute a subfamily in the superfamily of the rhodopsin-type receptors. Each of the receptors was expressed in cultured cells, and its ligand-binding properties and signal transduction pathways were characterized. Moreover, domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified. Information also is accumulating as to the distribution of these receptors in the body. It is also becoming clear for some types of ...

2,371 citations


Journal ArticleDOI
01 Jul 1999-Immunity
TL;DR: It is demonstrated that MyD88 knockout mice lack the ability to respond to LPS as measured by shock response, B cell proliferative response, and secretion of cytokines by macrophages and embryonic fibroblasts, and the inability of MyD 88 knockout mice to induce LPS-dependent gene expression cannot be attributed to lack of the activation of MAP kinases and NF-kappaB.

2,135 citations


Journal ArticleDOI
TL;DR: It is reported that a novel molecule, MD-2, is requisite for LPS signaling of TLR4, which is physically associated withTLR4 on the cell surface and confers responsiveness to LPS.
Abstract: Toll-like receptor 4 (TLR4) is a mammalian homologue of Drosophila Toll, a leucine-rich repeat molecule that can trigger innate responses against pathogens. The TLR4 gene has recently been shown to be mutated in C3H/HeJ and C57BL/10ScCr mice, both of which are low responders to lipopolysaccharide (LPS). TLR4 may be a long-sought receptor for LPS. However, transfection of TLR4 does not confer LPS responsiveness on a recipient cell line, suggesting a requirement for an additional molecule. Here, we report that a novel molecule, MD-2, is requisite for LPS signaling of TLR4. MD-2 is physically associated with TLR4 on the cell surface and confers responsiveness to LPS. MD-2 is thus a link between TLR4 and LPS signaling. Identification of this new receptor complex has potential implications for understanding host defense, as well as pathophysiologic, mechanisms.

2,123 citations


Journal ArticleDOI
01 Jan 1999-Science
TL;DR: Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival.
Abstract: Programmed cell death (apoptosis) occurs during normal development of the central nervous system. However, the mechanisms that determine which neurons will succumb to apoptosis are poorly understood. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival. These findings may have relevance to human neurodevelopmental disorders involving prenatal (drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to drugs that block NMDA receptors.

1,964 citations


Journal ArticleDOI
30 Jul 1999-Science
TL;DR: It is shown that microbial lipoproteins are potent stimulators of IL-12 production by human macrophages, and that induction is mediated by Toll-like receptors (TLRs), and that Activation of TLRs by microbes may initiate innate defense mechanisms against infectious pathogens.
Abstract: The generation of cell-mediated immunity against many infectious pathogens involves the production of interleukin-12 (IL-12), a key signal of the innate immune system. Yet, for many pathogens, the molecules that induce IL-12 production by macrophages and the mechanisms by which they do so remain undefined. Here it is shown that microbial lipoproteins are potent stimulators of IL-12 production by human macrophages, and that induction is mediated by Toll-like receptors (TLRs). Several lipoproteins stimulated TLR-dependent transcription of inducible nitric oxide synthase and the production of nitric oxide, a powerful microbicidal pathway. Activation of TLRs by microbial lipoproteins may initiate innate defense mechanisms against infectious pathogens.

1,684 citations


Journal ArticleDOI
TL;DR: Data indicate that OPGL-induced osteoclastogenesis is directly mediated through RANK on osteocLast precursor cells, and polyclonal Ab against the RANK extracellular domain promotes osteoclineogenesis in bone marrow cultures suggesting that RANK activation mediates the effects of OPGl on the osteoc last pathway.
Abstract: A receptor that mediates osteoprotegerin ligand (OPGL)-induced osteoclast differentiation and activation has been identified via genomic analysis of a primary osteoclast precursor cell cDNA library and is identical to the tumor necrosis factor receptor (TNFR) family member RANK. The RANK mRNA was highly expressed by isolated bone marrow-derived osteoclast progenitors and by mature osteoclasts in vivo. Recombinant OPGL binds specifically to RANK expressed by transfected cell lines and purified osteoclast progenitors. Transgenic mice expressing a soluble RANK-Fc fusion protein have severe osteopetrosis because of a reduction in osteoclasts, similar to OPG transgenic mice. Recombinant RANK-Fc binds with high affinity to OPGL in vitro and blocks osteoclast differentiation and activation in vitro and in vivo. Furthermore, polyclonal Ab against the RANK extracellular domain promotes osteoclastogenesis in bone marrow cultures suggesting that RANK activation mediates the effects of OPGL on the osteoclast pathway. These data indicate that OPGL-induced osteoclastogenesis is directly mediated through RANK on osteoclast precursor cells.

PatentDOI
14 Dec 1999-Nature
TL;DR: In this article, agents and methods for growth factor receptor activation by modulating the G-protein mediated signal transduction pathway were described, and a method to activate the growth factor receptors was proposed.
Abstract: The present invention relates to agents and methods for growth-factor receptor activation by modulating the G-protein mediated signal transduction pathway.

Journal ArticleDOI
TL;DR: Among the wide spectrum of SST effects, several biological responses have been identified that display absolute or relative subtype selectivity and selected nonpeptide agonists with nanomolar affinity have been developed.

Journal ArticleDOI
TL;DR: LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.
Abstract: The extracellular matrix glycosaminoglycan hyaluronan (HA) is an abundant component of skin and mesenchymal tissues where it facilitates cell migration during wound healing, inflammation, and em- bryonic morphogenesis. Both during normal tissue homeostasis and particularly after tissue injury, HA is mobilized from these sites through lymphatic vessels to the lymph nodes where it is degraded before entering the circulation for rapid uptake by the liver. Currently, however, the identities of HA binding molecules which control this pathway are unknown. Here we describe the first such molecule, LYVE-1, which we have identified as a major receptor for HA on the lymph vessel wall. The deduced amino acid sequence of LYVE-1 predicts a 322-residue type I integral membrane polypeptide 41% similar to the CD44 HA receptor with a 212-residue extracellular domain containing a single Link module the prototypic HA binding domain of the Link protein superfamily. Like CD44, the LYVE-1 molecule binds both soluble and immobilized HA. However, unlike CD44, the LYVE-1 molecule colocalizes with HA on the luminal face of the lymph vessel wall and is completely absent from blood vessels. Hence, LYVE-1 is the first lymph-specific HA receptor to be characterized and is a uniquely powerful marker for lymph vessels themselves.

Journal ArticleDOI
01 May 1999-Immunity
TL;DR: It is suggested that Notch1 plays an obligatory and selective role in T cell lineage induction in mice with a neonatally induced loss of Notch 1 function.

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: It is shown that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria.
Abstract: Macrophages orchestrate innate immunity by phagocytosing pathogens and coordinating inflammatory responses. Effective defence requires the host to discriminate between different pathogens. The specificity of innate immune recognition in Drosophila is mediated by the Toll family of receptors; Toll mediates anti-fungal responses, whereas 18-wheeler mediates anti-bacterial defence. A large number of Toll homologues have been identified in mammals, and Toll-like receptor 4 is critical in responses to Gram-negative bacteria. Here we show that Toll-like receptor 2 is recruited specifically to macrophage phagosomes containing yeast, and that a point mutation in the receptor abrogates inflammatory responses to yeast and Gram-positive bacteria, but not to Gram-negative bacteria. Thus, during the phagocytosis of pathogens, two classes of innate immune receptors cooperate to mediate host defence: phagocytic receptors, such as the mannose receptor, signal particle internalization, and the Toll-like receptors sample the contents of the vacuole and trigger an inflammatory response appropriate to defence against the specific organism.


Journal ArticleDOI
05 Mar 1999-Cell
TL;DR: A novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors are identified and may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.

Journal ArticleDOI
21 Oct 1999-Nature
TL;DR: In this article, a histidine-to-arginine point mutation at position 101 of the murine α1-subunit gene was found to render α-type GABAA receptors insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter γ-aminobutyric acid is preserved.
Abstract: GABAA (γ-aminobutyric acidA) receptors are molecular substrates for the regulation of vigilance, anxiety, muscle tension, epileptogenic activity and memory functions, which is evident from the spectrum of actions elicited by clinically effective drugs acting at their modulatory benzodiazepine-binding site. Here we show, by introducing a histidine-to-arginine point mutation at position 101 of the murine α1-subunit gene, that α1-type GABAA receptors, which are mainly expressed in cortical areas and thalamus1, are rendered insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter γ-aminobutyric acid is preserved. α1(H101R) mice failed to show the sedative, amnesic and partly the anticonvulsant action of diazepam. In contrast, the anxiolytic-like, myorelaxant, motor-impairing and ethanol-potentiating effects were fully retained, and are attributed to the nonmutated GABAA receptors found in the limbic system (α2, α5), in monoaminergic neurons (α3) and in motoneurons (α2, α5)1. Thus, benzodiazepine-induced behavioural responses are mediated by specific GABAA receptor subtypes in distinct neuronal circuits, which is of interest for drug design.

Journal ArticleDOI
17 Jun 1999-Nature
TL;DR: In this article, the authors provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, κ and δ, which results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor.
Abstract: The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function1. Pharmacological and molecular cloning studies have identified three opioid-receptor types, δ, κ and µ, that mediate these diverse effects2,3. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers4,5. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function6,7,8,9,10,11. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, κ and δ. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the κ–δ heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.

Journal ArticleDOI
20 Aug 1999-Cell
TL;DR: The generation of mice expressing only 5% of normal levels of the essential NMDAR1 (NR1) subunit is reported, supporting a model in which reduced NMDA receptor activity results in schizophrenic-like behavior and reveals how pharmacological manipulation of monoaminergic pathways can affect this phenotype.

Journal ArticleDOI
TL;DR: EphrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.
Abstract: Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.


Journal ArticleDOI
TL;DR: The results imply pathogenic roles for specific chemokine-chemokine receptor interactions in MS and suggest new molecular targets for therapeutic intervention.
Abstract: Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether specific chemokines were expressed in the CNS during acute demyelinating events by analyzing cerebrospinal fluid (CSF), whose composition reflects the CNS extracellular space. During MS attacks, we found elevated CSF levels of three chemokines that act toward T cells and mononuclear phagocytes: interferon-γ–inducible protein of 10 kDa (IP-10); monokine induced by interferon-γ (Mig); and regulated on activation, normal T-cell expressed and secreted (RANTES). We then investigated whether specific chemokine receptors were expressed by infiltrating cells in demyelinating MS brain lesions and in CSF. CXCR3, an IP-10/Mig receptor, was expressed on lymphocytic cells in virtually every perivascular inflammatory infiltrate in active MS lesions. CCR5, a RANTES receptor, was detected on lymphocytic cells, macrophages, and microglia in actively demyelinating MS brain lesions. Compared with circulating T cells, CSF T cells were significantly enriched for cells expressing CXCR3 or CCR5. Our results imply pathogenic roles for specific chemokine–chemokine receptor interactions in MS and suggest new molecular targets for therapeutic intervention.

Journal ArticleDOI
TL;DR: The three‐dimensional structure of the oestrogen receptor beta isoform (ERβ) ligand‐binding domain (LBD) in the presence of the phyto‐oestrogen genistein and the antagonist raloxifene is reported.
Abstract: Oestrogens exert their physiological effects through two receptor subtypes. Here we report the three-dimensional structure of the oestrogen receptor beta isoform (ERbeta) ligand-binding domain (LBD) in the presence of the phyto-oestrogen genistein and the antagonist raloxifene. The overall structure of ERbeta-LBD is very similar to that previously reported for ERalpha. Each ligand interacts with a unique set of residues within the hormone-binding cavity and induces a distinct orientation in the AF-2 helix (H12). The bulky side chain of raloxifene protrudes from the cavity and physically prevents the alignment of H12 over the bound ligand. In contrast, genistein is completely buried within the hydrophobic core of the protein and binds in a manner similar to that observed for ER's endogenous hormone, 17beta-oestradiol. However, in the ERbeta-genistein complex, H12 does not adopt the distinctive 'agonist' position but, instead, lies in a similar orientation to that induced by ER antagonists. Such a sub-optimal alignment of the transactivation helix is consistent with genistein's partial agonist character in ERbeta and demonstrates how ER's transcriptional response to certain bound ligands is attenuated.

Journal ArticleDOI
TL;DR: The high affinity receptor for immunoglobulin E (designated Fc epsilon RI) is the member of the antigen (Ag) receptor superfamily responsible for linking pathogen-or allergen-specific IgEs with cellular immunologic effector functions as mentioned in this paper.
Abstract: The high affinity receptor for immunoglobulin E (designated Fc epsilon RI) is the member of the antigen (Ag) receptor superfamily responsible for linking pathogen-or allergen-specific IgEs with cellular immunologic effector functions. This review provides background information on Fc epsilon RI function combined with more detailed summaries of recent progress in understanding specific aspects of Fc epsilon RI biology and biochemistry. Topics covered include the coordination and function of the large multiprotein signaling complexes that are assembled when Fc epsilon RI and other Ag receptors are engaged, new information on human receptor structures and tissue distribution, and the role of the FcR beta chain in signaling and its potential contribution to atopic phenotypes.

Journal ArticleDOI
TL;DR: It is concluded that diverse pathogens activate cells through TLR2 and proposed that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion.

Journal ArticleDOI
29 Oct 1999-Science
TL;DR: TCR gene amplification and sequencing showed that the naive repertoire is highly diverse, whereas the memory compartment, here one-third of the T cell population, contributes less than 1 percent of the total diversity.
Abstract: Generation and maintenance of an effective repertoire of T cell antigen receptors are essential to the immune system, yet the number of distinct T cell receptors (TCRs) expressed by the estimated 10 12 T cells in the human body is not known. In this study, TCR gene amplification and sequencing showed that there are about 10 6 different β chains in the blood, each pairing, on the average, with at least 25 different α chains. In the memory subset, the diversity decreased to 1 × 10 5 to 2 × 10 5 different β chains, each pairing with only a single α chain. Thus, the naive repertoire is highly diverse, whereas the memory compartment, here one-third of the T cell population, contributes less than 1 percent of the total diversity.

Journal Article
TL;DR: It is shown that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4, and that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.
Abstract: Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guerin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.

Journal ArticleDOI
TL;DR: Results indicate that CaM-KII can mediate plasticity at glutamatergic synapses by increasing single-channel conductance of existing functional AMPA-Rs or by recruiting new high-conductance-state AMPA -Rs.
Abstract: The ability of central glutamatergic synapses to change their strength in response to the intensity of synaptic input, which occurs, for example, in long-term potentiation (LTP), is thought to provide a cellular basis for memory formation and learning. LTP in the CA1 field of the hippocampus requires activation of Ca2+/calmodulin-kinase II (CaM-KII), which phosphorylates Ser-831 in the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate glutamate receptor (AMPA-R), and this activation/phosphorylation is thought to be a postsynaptic mechanism in LTP. In this study, we have identified a molecular mechanism by which CaM-KII potentiates AMPA-Rs. Coexpression in HEK-293 cells of activated CaM-KII with GluR1 did not affect the glutamate affinity of the receptor, the kinetics of desensitization and recovery, channel rectification, open probability, or gating. Single-channel recordings identified multiple conductance states for GluR1, and coexpression with CaM-KII or a mutation of Ser-831 to Asp increased the contribution of the higher conductance states. These results indicate that CaM-KII can mediate plasticity at glutamatergic synapses by increasing single-channel conductance of existing functional AMPA-Rs or by recruiting new high-conductance-state AMPA-Rs.