scispace - formally typeset
Search or ask a question

Showing papers on "Transdifferentiation published in 2015"


Journal ArticleDOI
09 Jul 2015-Nature
TL;DR: Two new fate-mapping mouse models are used to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype and suggest that Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.
Abstract: Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A) and plasticity (they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation Furthermore, although Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate Here we used two new fate-mapping mouse models to track Th17 cells during immune responses to show that CD4(+) T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype The transdifferentiation of Th17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion Thus, Th17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation Our data suggest that Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases

633 citations


Journal ArticleDOI
TL;DR: The potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications is shown, providing new insights into the plasticity of human ADMSCs.
Abstract: Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

385 citations


Journal ArticleDOI
TL;DR: It is shown that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo, and GFAP–AAV is an efficient vector for generatingiN cells from astroCytes in vivo.
Abstract: In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP–adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP–AAV is an efficient vector for generating iN cells from astrocytes in vivo.

201 citations


Journal ArticleDOI
TL;DR: The generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.
Abstract: The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.

189 citations


Journal ArticleDOI
03 Dec 2015-Nature
TL;DR: The discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.
Abstract: Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.

184 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Notch inhibition removes the brakes on the canonical Wnt signaling and promotes Lgr5+ progenitor cells to mitotically generate new HCs, and provides a new route to regenerate HCs from progenitors by interrupting the interaction between the Notch and Wnt pathways.
Abstract: The activation of cochlear progenitor cells is a promising approach for hair cell (HC) regeneration and hearing recovery. The mechanisms underlying the initiation of proliferation of postnatal cochlear progenitor cells and their transdifferentiation to HCs remain to be determined. We show that Notch inhibition initiates proliferation of supporting cells (SCs) and mitotic regeneration of HCs in neonatal mouse cochlea in vivo and in vitro. Through lineage tracing, we identify that a majority of the proliferating SCs and mitotic-generated HCs induced by Notch inhibition are derived from the Wnt-responsive leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5+) progenitor cells. We demonstrate that Notch inhibition removes the brakes on the canonical Wnt signaling and promotes Lgr5+ progenitor cells to mitotically generate new HCs. Our study reveals a new function of Notch signaling in limiting proliferation and regeneration potential of postnatal cochlear progenitor cells, and provides a new route to regenerate HCs from progenitor cells by interrupting the interaction between the Notch and Wnt pathways.

149 citations


Journal ArticleDOI
TL;DR: It is reported here that addition of Akt1 to the established (GHMT) reprogramming cocktail dramatically enhances the generation of cardiomyocytes from fibroblasts, and provides insights into the molecular basis of cardiac reprograming.
Abstract: Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique.

148 citations


Journal ArticleDOI
TL;DR: Recent examples of plasticity within an individual tissue stem cell hierarchy may be much more common than previously appreciated, highlighting the different modes of regeneration and their implications for the understanding of cellular hierarchy and tissue self-renewal.

142 citations


Journal ArticleDOI
TL;DR: Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet.
Abstract: Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.

140 citations


Journal ArticleDOI
TL;DR: Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration, as well as stabilized β-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration.
Abstract: Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized s-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration.

135 citations


Journal ArticleDOI
TL;DR: In this paper, small-molecule activators of toll-like receptor 3, together with external microenvironmental cues that drive endothelial cell (EC) specification, were shown to induce transdifferentiation of fibroblasts into ECs (induced ECs).
Abstract: Background—Cell fate is fluid and may be altered experimentally by the forced expression of master regulators mediating cell lineage. Such reprogramming has been achieved with the use of viral vectors encoding transcription factors. We recently discovered that the viral vectors are more than passive vehicles for transcription factors because they participate actively in the process of nuclear reprogramming to pluripotency by increasing epigenetic plasticity. On the basis of this recognition, we hypothesized that small-molecule activators of toll-like receptor 3, together with external microenvironmental cues that drive endothelial cell (EC) specification, might be sufficient to induce transdifferentiation of fibroblasts into ECs (induced ECs). Methods and Results—We show that toll-like receptor 3 agonist Poly I:C, combined with exogenous EC growth factors, transdifferentiated human fibroblasts into ECs. These induced ECs were comparable to human dermal microvascular ECs in immunohistochemical, genetic, an...

Journal ArticleDOI
TL;DR: It is shown that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms.
Abstract: Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

Journal ArticleDOI
TL;DR: The hypothesis that alpha cells are an endogenous reservoir of potential new beta cells are supported, and it is revealed that glucagon plays an important role in maintaining endocrine cell homeostasis through feedback mechanisms that govern cell fate stability.
Abstract: The interconversion of cell lineages via transdifferentiation is an adaptive mode of tissue regeneration and an appealing therapeutic target. However, its clinical exploitation is contingent upon the discovery of contextual regulators of cell fate acquisition and maintenance. In murine models of diabetes, glucagon-secreting alpha cells transdifferentiate into insulin-secreting beta cells following targeted beta cell depletion, regenerating the form and function of the pancreatic islet. However, the molecular triggers of this mode of regeneration are unknown. Here, using lineage-tracing assays in a transgenic zebrafish model of beta cell ablation, we demonstrate conserved plasticity of alpha cells during islet regeneration. In addition, we show that glucagon expression is upregulated after injury. Through gene knockdown and rescue approaches, we also find that peptides derived from the glucagon gene are necessary for alpha-to-beta cell fate switching. Importantly, whereas beta cell neogenesis was stimulated by glucose, alpha-to-beta cell conversion was not, suggesting that transdifferentiation is not mediated by glucagon/GLP-1 control of hepatic glucose production. Overall, this study supports the hypothesis that alpha cells are an endogenous reservoir of potential new beta cells. It further reveals that glucagon plays an important role in maintaining endocrine cell homeostasis through feedback mechanisms that govern cell fate stability.

Journal ArticleDOI
TL;DR: The role of Twist1, a central regulator of epithelial-mesenchymal transition in carcinoma cells, in the transdifferentiation of normal quiescent fibroblasts to CAF is examined and its upstream controls and downstream effectors are defined.
Abstract: Cancer-associated fibroblasts (CAF) are key contributors to malignant progression, but their critical regulators remain largely unknown. In this study, we examined the role of Twist1, a central regulator of epithelial-mesenchymal transition in carcinoma cells, in the transdifferentiation of normal quiescent fibroblasts to CAF and we defined its upstream controls and downstream effectors. Primary human gastric fibroblast and CAF cultures were established from gastrectomy specimens and validated as nontumor cells by somatic mutation analyses. In these cultures, exposure to the proinflammatory cytokine IL6 commonly expressed in tumors was sufficient to induce Twist1 expression in normal fibroblasts and transdifferentiate them into CAFs via STAT3 phosphorylation. In xenograft models, tumor infiltration of Twist1-expressing CAFs was enhanced strongly by ectopic IL6 expression in gastric or breast cancer cells. We found that Twist1 expression was necessary and sufficient for CAF transdifferentiation. Enforced expression of Twist1 in normal fibroblasts was also sufficient to drive CAF marker expression and malignant character in gastric cancer cells both in vitro and in vivo. Conversely, silencing the expression of Twist1 in CAFs abrogated their tumor-promoting properties. Downstream of Twist1, we defined the chemokine CXCL12 as a transcriptional target. Clinically, CXCL12 and Twist1 expression were correlated in CAFs present in gastric tumor specimens. Finally, ectopic expression of Twist1 in normal fibroblasts suppressed premature senescence, whereas Twist1 attenuation accelerated senescence in CAFs. Our findings define Twist1 as a compelling target to deprogram the tumor-supporting features of the cancer microenvironment.

Journal ArticleDOI
TL;DR: Using highly sensitive RNAseq to examine the whole transcriptome of enriched aortic hematopoietic stem cells and endothelial cells, the authors find G-protein–coupled receptor, Gpr56, is required to generate the first HSCs during endothelial to hematopolietic cell transition.
Abstract: Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial to hematopoietic cell transition (EHT). Because of small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells (ECs [HECs]), the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs, HECs, and ECs. Gpr56, a G-coupled protein receptor, is one of the most highly up-regulated of the 530 differentially expressed genes. Also, highly up-regulated are hematopoietic transcription factors, including the “heptad” complex of factors. We show that Gpr56 (mouse and human) is a target of the heptad complex and is required for hematopoietic cluster formation during EHT. Our results identify the processes and regulators involved in EHT and reveal the surprising requirement for Gpr56 in generating the first HSCs.

Journal ArticleDOI
TL;DR: This paper showed that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to induced dopaminergic (iDA) neurons.
Abstract: The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy.

Journal ArticleDOI
TL;DR: Critical redox control of tumor plasticity that may affect therapeutic response in NSCLC is uncovers in a mouse model.

Journal ArticleDOI
TL;DR: The capacity and molecular mechanism of M SC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed.
Abstract: Mesenchymal stem cells (MSCs) are a group of stem cells derived from the mesodermal mesenchyme. MSCs can be obtained from a variety of tissues, including bone marrow, umbilical cord tissue, umbilical cord blood, peripheral blood and adipose tissue. Under certain conditions, MSCs can differentiate into many cell types both in vitro and in vivo, including hepatocytes. To date, four main strategies have been developed to induce the transdifferentiation of MSCs into hepatocytes: addition of chemical compounds and cytokines, genetic modification, adjustment of the micro-environment and alteration of the physical parameters used for culturing MSCs. Although the phenomenon of transdifferentiation of MSCs into hepatocytes has been described, the detailed mechanism is far from clear. Generally, the mechanism is a cascade reaction whereby stimulating factors activate cellular signalling pathways, which in turn promote the production of transcription factors, leading to hepatic gene expression. Because MSCs can give rise to hepatocytes, they are promising to be used as a new treatment for liver dysfunction or as a bridge to liver transplantation. Numerous studies have confirmed the therapeutic effects of MSCs on hepatic fibrosis, cirrhosis and other liver diseases, which may be related to the differentiation of MSCs into functional hepatocytes. In addition to transdifferentiation into hepatocytes, when MSCs are used to treat liver disease, they may also inhibit hepatocellular apoptosis and secrete various bioactive molecules to promote liver regeneration. In this review, the capacity and molecular mechanism of MSC transdifferentiation, and the therapeutic effects of MSCs on liver diseases are thoroughly discussed.

Journal ArticleDOI
TL;DR: The data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state, as well as an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripOTency.
Abstract: Brief expression of pluripotency-associated factors such as Oct4, Klf4, Sox2 and c-Myc (OKSM), in combination with differentiation-inducing signals, has been reported to trigger transdifferentiation of fibroblasts into other cell types. Here we show that OKSM expression in mouse fibroblasts gives rise to both induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) under conditions previously shown to induce only iNSCs. Fibroblast-derived iNSC colonies silenced retroviral transgenes and reactivated silenced X chromosomes, both hallmarks of pluripotent stem cells. Moreover, lineage tracing with an Oct4-CreER labeling system demonstrated that virtually all iNSC colonies originated from cells transiently expressing Oct4, whereas ablation of Oct4(+) cells prevented iNSC formation. Lastly, an alternative transdifferentiation cocktail that lacks Oct4 and was reportedly unable to support induced pluripotency yielded iPSCs and iNSCs carrying the Oct4-CreER-derived lineage label. Together, these data suggest that iNSC generation from fibroblasts using OKSM and other pluripotency-related reprogramming factors requires passage through a transient iPSC state.

Journal ArticleDOI
TL;DR: This review focuses on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Abstract: The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.

Journal ArticleDOI
TL;DR: It is shown that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/ EBPα; and de novo enhancer that are targeted by C/ eBPα, acting as a pioneer factor for subsequent binding byPU.1.
Abstract: Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells.

Journal ArticleDOI
TL;DR: The various mechanism employed by MSCs to effect immunosuppression as well as the current status of its use to treat excessive inflammation in the context of acute lung injury (ALI) and sepsis in both preclinical and clinical settings are explored.
Abstract: It is increasingly recognized that immunomodulation represents an important mechanism underlying the benefits of many stem cell therapies, rather than the classical paradigm of transdifferentiation and cell replacement. In the former paradigm, the beneficial effects of cell therapy result from paracrine mechanism(s) and/or cell-cell interaction as opposed to direct engraftment and repair of diseased tissue and/or dysfunctional organs. Depending on the cell type used, components of the secretome, including microRNA (miRNA) and extracellular vesicles, may be able to either activate or suppress the immune system even without direct immune cell contact. Mesenchymal stromal cells (MSCs), also referred to as mesenchymal stem cells, are found not only in the bone marrow, but also in a wide variety of organs and tissues. In addition to any direct stem cell activities, MSCs were the first stem cells recognized to modulate immune response, and therefore they will be the focus of this review. Specifically, MSCs appear to be able to effectively attenuate acute and protracted inflammation via interactions with components of both innate and adaptive immune systems. To date, this capacity has been exploited in a large number of preclinical studies and MSC immunomodulatory therapy has been attempted with various degrees of success in a relatively large number of clinical trials. Here, we will explore the various mechanism employed by MSCs to effect immunosuppression as well as review the current status of its use to treat excessive inflammation in the context of acute lung injury (ALI) and sepsis in both preclinical and clinical settings.

Journal ArticleDOI
TL;DR: 'Subducted' cells contain RPE melanosomes and localize to the sub-RPE space, on Bruch's membrane, and 'Melanotic' cells appear gray-black in the CNV fundus provide a basis for future molecular phenotyping studies.
Abstract: Age-related macular degeneration (AMD), a prevalent disease of the photoreceptor support system,1 exhibits prominent pathology in the RPE and underlying Bruch's membrane (BrM). The RPE is a monolayer of cuboidal epithelial cells of neuroectodermal origin, dually tasked with maintaining retina apically and choroid basally.2–4 As stated,5 we hypothesize that the RPE exhibits stereotypic stress responses and death pathways, which if defined, quantified, and followed, provide windows into molecular pathology and points of therapeutic entry. We seek to systematize morphologies of RPE and RPE-derived cells in advanced AMD. The first of two companion reports focused on RPE cells, which contain melanosomes, lipofuscin, and melanolipofuscin and are associated with a basement membrane or with basal laminar deposits (BLamD).5 Our major findings were the numerous RPE cells surviving at end-stage disease, specifically ‘Dissociated’ (a broken up RPE layer within the atrophic area) and ‘Entombed’ (cells within fibrovascular and fibrocellular scars). We also solidified and extended our previous studies6,7 that proposed two major pathways of cell transdifferentiation and death, represented by the ‘Sloughed’/‘Intraretinal’ and ‘Shedding’ morphologies, respectively. In this second of two companion reports, we describe, illustrate, and quantify RPE-derived cells, which are plausibly derived from RPE, yet are outside the RPE layer and not attached to a basal lamina or BLamD. Transdifferentiation is the direct transformation of one differentiated cell type to another.8 An example of transdifferentiation is the epithelium-to-mesenchymal transition (EMT), essential to embryology, in which polarized epithelial cells convert into motile mesenchymal cells, activated by contextual microenvironmental signals and governed by a network of transcription factors, epigenetic regulators, and signaling pathways.9 Central to cancer, wound healing, and organ fibrosis, transdifferentiation by EMT may also contribute to RPE behavior in proliferative vitreoretinopathy and advanced AMD.10–12 In this article, we focus on two types of RPE-derived cells: ‘Subducted’ and ‘Melanotic.’ We provide evidence that these distinctive morphologies arise directly from the ‘Dissociated’ and ‘Entombed’ RPE phenotypes, respectively, as defined in our companion article,5 reinforcing that RPE transdifferentiation may be important in AMD pathogenesis.10–12

Journal ArticleDOI
TL;DR: The ability of alcohol to remodel the epigenome during HSC transdifferentiation provides mechanisms for it to act as a co-morbidity factor in liver disease.

Journal ArticleDOI
TL;DR: It is found that simultaneous deletion of Wilms’ Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development, implying that these two cell types most likely originate from the same progenitor cells.
Abstract: Sertoli and Leydig cells, the two major somatic cell types in the testis, have different morphologies and functions. Both are essential for gonad development and spermatogenesis. However, whether these cells are derived from the same progenitor cells and the mechanism regulating the differentiation between these two cell types during gonad development remains unclear. A previous study showed that overactivation of Ctnnb1 (cadherin-associated protein, beta 1) in Sertoli cells resulted in Sertoli cell tumors. Surprisingly, in the present study, we found that simultaneous deletion of Wilms’ Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development. Lineage tracing experiments revealed that the Leydig-like tumor cells were derived from Sertoli cells. Further studies confirmed that Wt1 is required for the maintenance of the Sertoli cell lineage and that deletion of Wt1 resulted in the reprogramming of Sertoli cells to Leydig cells. Consistent with this interpretation, overexpression of Wt1 in Leydig cells led to the up-regulation of Sertoli cell-specific gene expression and the down-regulation of steroidogenic gene expression. These results demonstrate that the distinction between Sertoli cells and Leydig cells is regulated by Wt1, implying that these two cell types most likely originate from the same progenitor cells. This study thus provides a novel concept for somatic cell fate determination in testis development that may also represent an etiology of male infertility in human patients.

Journal ArticleDOI
TL;DR: In this article, the authors identify the mechanisms that link EGFR signaling with activation of SOX9 during acinar-ductal metaplasia, a transdifferentiation process that precedes pancreatic carcinogenesis.

Journal ArticleDOI
TL;DR: It is shown that Protein Kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs and that PKD1 acts downstream of TGFα and Kras to mediate formation of ductal structures through activation of the Notch pathway.
Abstract: The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

Journal ArticleDOI
04 Jun 2015-PLOS ONE
TL;DR: This study elucidated gene expression profiles, as well as regulation of paracrine factors, of MSCs at single cell level in vivo, indicating that paracine factors from MSCS account for the improvement of cardiac function after infarction.
Abstract: Background Mesenchymal stem cells (MSCs) have been recently demonstrated as a promising stem cell type to rescue damaged myocardium after acute infarction. One of the most important mechanisms underlying their therapeutic effects is the secretion of paracrine factors. However, the expression profile of paracrine factors of MSCs in infarcted hearts, especially at single cell level, is poorly defined. Methods and Results We aimed to depict the transcriptional profile of paracrine factors secreted by MSCs in vivo, with particular interest in the comparison between normal and infarcted hearts. Bone marrow mesenchymal stem cells were isolated and injected into mice hearts immediately after infarction surgery. Bioluminescence imaging (BLI) indicated a proportion of cells still alive even up to 10 days post surgery. Paralleled with survived cells, cardiac function was significantly improved after MSC injection compared to that in PBS-injected mice, indicated by MRI and histology. Despite increased number of vessels in MSC-injected hearts, endothelial cells and cardiomyocytes transdifferentiation were not observed in infarcted hearts 5 days after infarction. Furthermore, laser capture microdissection (LCM) followed by high through-put real time PCR was employed in our study, uncovering that the injected MSCs, compared to local cardiomyocytes, displayed elevated levels of secreted factors. To further investigate the regulation of those factors, we performed single cell analysis to dissect the gene expression profile of MSCs at single cell level in infarcted and normal hearts, respectively. Consistent with the in vivo observation, a similar regulation pattern of those factors was detected in cultured MSCs under hypoxia. Conclusions Our study, for the first time, elucidated gene expression profiles, as well as regulation of paracrine factors, of MSCs at single cell level in vivo, indicating that paracrine factors from MSCs account for the improvement of cardiac function after infarction.

Journal ArticleDOI
TL;DR: The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Abstract: This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.

Journal ArticleDOI
TL;DR: It is reported that fibroblasts have the ability to transfer a remarkable amount of proteins and lipids to neighboring cells, in an ectosome-dependent fashion, identifying a novel and native property of these cells.