scispace - formally typeset
Search or ask a question

Showing papers by "Alison Goate published in 2016"


Journal ArticleDOI
TL;DR: A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures, and combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progensitors and astrocytes from ZIKv-induced cell death.
Abstract: In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.

566 citations


Journal ArticleDOI
TL;DR: This work examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD.
Abstract: Objective White matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD. Methods The study comprised participants (n = 299; age = 39.03 ± 10.13) from the Dominantly Inherited Alzheimer Network, including 184 (61.5%) with a mutation that results in AD and 115 (38.5%) first-degree relatives who were noncarrier controls. We calculated the estimated years from expected symptom onset (EYO) by subtracting the affected parent's symptom onset age from the participant's age. Baseline MRI data were analyzed for total and regional WMH. Mixed-effects piece-wise linear regression was used to examine WMH differences between carriers and noncarriers with respect to EYO. Results Mutation carriers had greater total WMH volumes, which appeared to increase approximately 6 years before expected symptom onset. Effects were most prominent for the parietal and occipital lobe, which showed divergent effects as early as 22 years before estimated onset. Interpretation Autosomal-dominant AD is associated with increased WMH well before expected symptom onset. The findings suggest the possibility that WMHs are a core feature of AD, a potential therapeutic target, and a factor that should be integrated into pathogenic models of the disease. Ann Neurol 2016;79:929–939

356 citations


Journal ArticleDOI
Gyungah Jun1, Carla A. Ibrahim-Verbaas2, Maria Vronskaya3, J-C Lambert4  +447 moreInstitutions (52)
TL;DR: The authors' APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region, and the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with TMEM106B (P=1·6 × 10−7) is noteworthy, because TMEM 106B variants have previously been associated with risk of frontotemporal dementia.
Abstract: APOE ɛ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ɛ4+ (10 352 cases and 9207 controls) and APOE ɛ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ɛ4 status. Suggestive associations (P<1 × 10(-4)) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ɛ4+: 1250 cases and 536 controls; APOE ɛ4-: 718 cases and 1699 controls). Among APOE ɛ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10(-9)). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ɛ4+ subjects (CR1 and CLU) or APOE ɛ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10(-7)) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P ⩽ 1.3 × 10(-8)), frontal cortex (P ⩽ 1.3 × 10(-9)) and temporal cortex (P⩽1.2 × 10(-11)). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10(-6)) and temporal cortex (P=2.6 × 10(-6)). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ɛ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted.

241 citations


Journal ArticleDOI
TL;DR: This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.
Abstract: Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as sites associated with the greatest and earliest gene expression abnormalities. This transcriptomic network analysis of 19 brain regions provides a comprehensive assessment of the critical molecular pathways associated with AD pathology and offers new insights into molecular mechanisms underlying selective regional vulnerability to AD at different stages of the progression of cognitive compromise and development of the canonical neuropathological lesions of AD.

216 citations



Journal ArticleDOI
TL;DR: Findings support CNIH3 involvement in the pathophysiology of opioid dependence, complementing prior studies implicating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate system.
Abstract: Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable. We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid-dependent daily injectors (N=1167) with opioid misusers who never progressed to daily injection (N=161). The strongest associations, observed for CNIH3 single-nucleotide polymorphisms (SNPs), were confirmed in two independent samples, the Yale-Penn genetic studies of opioid, cocaine and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-dependent opioid misusers and opioid-dependent individuals. Meta-analyses found five genome-wide significant CNIH3 SNPs. The A allele of rs10799590, the most highly associated SNP, was robustly protective (P=4.30E-9; odds ratio 0.64 (95% confidence interval 0.55-0.74)). Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke Neurogenetics Study (N=312) provide evidence of this SNP's in vivo functionality; rs10799590 A allele carriers displayed significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant correlations for haplotypes in CNIH3 and functionally related genes. These convergent findings support CNIH3 involvement in the pathophysiology of opioid dependence, complementing prior studies implicating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate system.

100 citations


Journal ArticleDOI
26 Feb 2016-PLOS ONE
TL;DR: Findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk and demonstrates that PIL RB, as well as other genes within the GWAS loci, are most highly expressed inmicroglia.
Abstract: Late onset Alzheimer's disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quantitative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between rs1476679 and PILRB and GATS, which occurs within the ZCWPW1 locus. PILRB and GATS expression levels, within the ZCWPW1 locus, were also associated with AD status. Rs7120548 was associated with MTCH2 expression, which occurs within the CELF1 locus. Additionally, expression of several genes within the CELF1 locus, including MTCH2, were highly correlated with one another and were associated with AD status. We further demonstrate that PILRB, as well as other genes within the GWAS loci, are most highly expressed in microglia. These findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk.

99 citations


Journal ArticleDOI
TL;DR: The most prevalent non-amnestic cognitive manifestations in participants in the DIAN-OBS cohort were those typical of mild to moderate Alzheimer's disease, including visual agnosia, aphasia, and behavioural changes, and motor symptoms were more common at younger age of onset.
Abstract: Summary Background Autosomal dominant familial Alzheimer's disease (ADAD) is a rare disorder with non-amnestic neurological symptoms in some clinical presentations. We aimed to compile and compare data from symptomatic participants in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) with those reported in the literature to estimate the prevalences of non-amnestic neurological symptoms in participants with ADAD. Methods We prospectively collected data from the DIAN-OBS database, which recruited participants from study centres in the USA, Europe, and Australia, between Feb 29, 2008, and July 1, 2014. We also did a systematic review of publications to extract individual-level clinical data for symptomatic participants with ADAD. We used data for age of onset (from first report of cognitive decline), disease course from onset to death, and the presence of 13 neurological findings that have been reported in association with ADAD. Using multivariable linear regression, we investigated the prevalences of various non-amnestic neurological symptoms and the contributions of age of onset and specific mutation type on symptoms. Findings The DIAN-OBS dataset included 107 individuals with detailed clinical data (forming the DIAN-OBS cohort). Our systematic review yielded 188 publications reporting on 1228 symptomatic individuals, with detailed neurological examination descriptions available for 753 individuals (forming the published data cohort). The most prevalent non-amnestic cognitive manifestations in participants in the DIAN-OBS cohort were those typical of mild to moderate Alzheimer's disease, including visual agnosia (55·1%, 95% CI 45·7–64·6), aphasia (57·9%, 48·6–67·3), and behavioural changes (61·7%, 51·5–70·0). Non-amnestic cognitive manifestations were less prevalent in the published data cohort (eg, visual agnosia [5·6%, 3·9–7·2], aphasia [23·0%, 20·0–26·0], and behavioural changes [31·7%, 28·4–35·1]). Prevalence of non-cognitive neurological manifestations in the DIAN-OBS cohort was low, including myoclonus and spasticity (9·3%, 95% CI 3·8–15·0), and seizures (2·8%, 0·5–5·9) and moderate for parkinsonism (11·2%, 5·3–17·1). By constrast, prevalence was higher in the published data cohort for myoclonus and spasticity (19·4%, 16·6–22·2 and 15·0%, 12·5–17·6, respectively), parkinsonism (12·5%, 10·1–15·0), and seizures (20·3%, 17·4–23·2). In an analysis of the published data cohort, ischaemic stroke was more prevalent at older ages of onset of symptoms of ADAD (odds ratio 1·09 per 1 year increase in age of onset, 95% CI 1·04–1·14, p=0·0003); and motor symptoms were more common at younger age of onset (myoclonus 0·93, 0·90–0·97, p=0·0007; seizures 0·95, 0·92–0·98, p=0·0018; corticobulbar deficits 0·91, 0·86–0·96, p=0·0012; and cerebellar ataxia 0·82, 0·74–0·91, p=0·0002). In the DIAN-OBS cohort, non-cognitive symptoms were more common at more severe stages of disease. Interpretation The non-cognitive clinical manifestations of Alzheimer's disease seem to affect a small proportion of participants with mild to moderate ADAD, and are probably influenced by disease severity, environmental, and genetic factors. When evaluating patients with potential ADAD, clinicians should note that cognitive symptoms typical of sporadic Alzheimer's disease are the most consistent finding, with some patients manifesting non-cognitive neurological symptoms. Future work is needed to determine the environmental and genetic factors that cause these neurological symptoms. Funding National Institutes of Health and German Center for Neurodegenerative Diseases.

85 citations


Journal ArticleDOI
01 Oct 2016-Brain
TL;DR: In this article, the effect of the brain derived neurotrophic factor (BDNF) Val66Met polymorphism on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease was investigated.
Abstract: SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) e4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val66 homozygotes, 48 Met66 carriers). Among preclinical mutation carriers, Met66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val66 homozygotes and Met66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease.

62 citations


Journal ArticleDOI
TL;DR: Overall, this study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk.
Abstract: Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk.

54 citations


Journal ArticleDOI
TL;DR: In familial and sporadic LOAD, a history of stroke was significantly associated with increased disease risk and mediated the association between selected CV risk factors and LOad, which appears to be independent of the LOAD-related genetic background.
Abstract: Importance The contribution of cardiovascular disease (CV) and cerebrovascular disease to the risk for late-onset Alzheimer disease (LOAD) has been long debated. Investigations have shown that antecedent CV risk factors increase the risk for LOAD, although other investigations have failed to validate this association. Objective To study the contribution of CV risk factors (type 2 diabetes, hypertension, and heart disease) and the history of stroke to LOAD in a data set of large families multiply affected by LOAD. Design, Setting, and Participants The National Institute on Aging Late-Onset Alzheimer Disease/National Cell Repository for Alzheimer Disease family study (hereinafter referred to as NIA-LOAD study) is a longitudinal study of families with multiple members affected with LOAD. A multiethnic community-based longitudinal study (Washington Heights–Inwood Columbia Aging Project [WHICAP]) was used to replicate findings. The 6553 participants in the NIA-LOAD study were recruited from 23 US Alzheimer disease centers with ongoing data collection since 2003; the 5972 WHICAP participants were recruited at Columbia University with ongoing data collection since 1992. Data analysis was performed from 2003 to 2015. Main Outcomes and Measures Generalized mixed logistic regression models tested the association of CV risk factors (primary association) with LOAD. History of stroke was used for the secondary association. A secondary model adjusted for the presence of an apolipoprotein E ( APOE ) e4 allele. A genetic risk score, based on common variants associated with LOAD, was used to account for LOAD genetic risk beyond the APOE e4 effect. Mediation analyses evaluated stroke as a mediating factor between the primary association and LOAD. Results A total of 6553 NIA-LOAD participants were included in the analyses (4044 women [61.7%]; 2509 men [38.3%]; mean [SD] age, 77.0 [9] years), with 5972 individuals from the WHICAP study included in the replication sample (4072 women [68.2%]; 1900 men [31.8%]; mean [SD] age, 76.5 [7.0] years). Hypertension was associated with decreased LOAD risk (odds ratio [OR], 0.63; 95% CI, 0.55-0.72); type 2 diabetes and heart disease were not. History of stroke conferred greater than 2-fold increased risk for LOAD (OR, 2.23; 95% CI, 1.75-2.83). Adjustment for APOE e4 did not alter results. The genetic risk score was associated with LOAD (OR, 2.85; 95% CI, 2.05-3.97) but did not change the independent association of LOAD with hypertension or stroke. In the WHICAP sample, hypertension was not associated with LOAD (OR, 0.99; 95% CI, 0.88-1.11), whereas history of stroke increased the risk for LOAD (OR, 1.96; 95% CI, 1.56-2.46). The effect of hypertension on LOAD risk was also mediated by stroke in the NIA-LOAD and the WHICAP samples. Conclusions and Relevance In familial and sporadic LOAD, a history of stroke was significantly associated with increased disease risk and mediated the association between selected CV risk factors and LOAD, which appears to be independent of the LOAD-related genetic background.

Journal ArticleDOI
Matthew Traylor1, Matthew Traylor2, Poneh Adib-Samii3, Denise Harold4  +205 moreInstitutions (7)
TL;DR: In this article, the authors investigated the evidence that shared genetic factors underpin the two diseases and found evidence of a shared genetic contribution between Alzheimer's disease and small vessel stroke (rG [standard error] 0.37 [0.17] and p 0.011).
Abstract: Objective Increasing evidence suggests epidemiological and pathological links between Alzheimer's disease (AD) and ischemic stroke (IS). We investigated the evidence that shared genetic factors underpin the two diseases. Methods Using genome‐wide association study (GWAS) data from METASTROKE + (15,916 IS cases and 68,826 controls) and the International Genomics of Alzheimer's Project (IGAP; 17,008 AD cases and 37,154 controls), we evaluated known associations with AD and IS. On the subset of data for which we could obtain compatible genotype‐level data (4,610 IS cases, 1,281 AD cases, and 14,320 controls), we estimated the genome‐wide genetic correlation (rG) between AD and IS, and the three subtypes (cardioembolic, small vessel, and large vessel), using genome‐wide single‐nucleotide polymorphism (SNP) data. We then performed a meta‐analysis and pathway analysis in the combined AD and small vessel stroke data sets to identify the SNPs and molecular pathways through which disease risk may be conferred. Results We found evidence of a shared genetic contribution between AD and small vessel stroke (rG [standard error] = 0.37 [0.17]; p = 0.011). Conversely, there was no evidence to support shared genetic factors in AD and IS overall or with the other stroke subtypes. Of the known GWAS associations with IS or AD, none reached significance for association with the other trait (or stroke subtypes). A meta‐analysis of AD IGAP and METASTROKE + small vessel stroke GWAS data highlighted a region (ATP5H/KCTD2/ICT1) associated with both diseases (p = 1.8 × 10−8). A pathway analysis identified four associated pathways involving cholesterol transport and immune response. Interpretation Our findings indicate shared genetic susceptibility to AD and small vessel stroke and highlight potential causal pathways and loci. Ann Neurol 2016;79:739–747

Journal ArticleDOI
TL;DR: Gene ontology analyses suggest that CSF CLU levels may be associated with wound healing and immune response which supports previous functional studies that demonstrated an association between CLU and IL6.


01 Oct 2016
TL;DR: The deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met66 carriers than in Val66 homozygotes, and effects of apolipoprotein E (APOE) ε4 on these relationships are explored.
Abstract: SEE ROGAEVA AND SCHMITT-ULMS DOI101093/AWW201 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer's disease. However, the effect of BDNF in autosomal dominant Alzheimer's disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer's disease. We explored effects of apolipoprotein E (APOE) e4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer's disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val66 homozygotes, 48 Met66 carriers). Among preclinical mutation carriers, Met66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val66 homozygotes and Met66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer's disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer's disease mutation carriers are greater in Met66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer's disease.

Journal ArticleDOI
TL;DR: It is indicated that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk and likely influence the risk for smoking-related diseases such as lung cancer.
Abstract: The common nonsynonymous variant rs16969968 in the α5 nicotinic receptor subunit gene (CHRNA5) is the strongest genetic risk factor for nicotine dependence in European Americans and contributes to risk in African Americans. To comprehensively examine whether other CHRNA5 coding variation influences nicotine dependence risk, we performed targeted sequencing on 1582 nicotine-dependent cases (Fagerstrom Test for Nicotine Dependence score⩾4) and 1238 non-dependent controls, with independent replication of common and low frequency variants using 12 studies with exome chip data. Nicotine dependence was examined using logistic regression with individual common variants (minor allele frequency (MAF)⩾0.05), aggregate low frequency variants (0.05>MAF⩾0.005) and aggregate rare variants (MAF<0.005). Meta-analysis of primary results was performed with replication studies containing 12 174 heavy and 11 290 light smokers. Next-generation sequencing with 180 × coverage identified 24 nonsynonymous variants and 2 frameshift deletions in CHRNA5, including 9 novel variants in the 2820 subjects. Meta-analysis confirmed the risk effect of the only common variant (rs16969968, European ancestry: odds ratio (OR)=1.3, P=3.5 × 10(-11); African ancestry: OR=1.3, P=0.01) and demonstrated that three low frequency variants contributed an independent risk (aggregate term, European ancestry: OR=1.3, P=0.005; African ancestry: OR=1.4, P=0.0006). The remaining 22 rare coding variants were associated with increased risk of nicotine dependence in the European American primary sample (OR=12.9, P=0.01) and in the same risk direction in African Americans (OR=1.5, P=0.37). Our results indicate that common, low frequency and rare CHRNA5 coding variants are independently associated with nicotine dependence risk. These newly identified variants likely influence the risk for smoking-related diseases such as lung cancer.

Journal ArticleDOI
TL;DR: African‐American (AA) individuals have a higher risk for late‐onset Alzheimer's disease (LOAD) than Americans of primarily European ancestry (EA) and there likely are risk variants of higher frequency in AAs that have not been discovered.
Abstract: Introduction African-American (AA) individuals have a higher risk for late-onset Alzheimer's disease (LOAD) than Americans of primarily European ancestry (EA). Recently, the largest genome-wide association study in AAs to date confirmed that six of the Alzheimer's disease (AD)-related genetic variants originally discovered in EA cohorts are also risk variants in AA; however, the risk attributable to many of the loci (e.g., APOE, ABCA7) differed substantially from previous studies in EA. There likely are risk variants of higher frequency in AAs that have not been discovered. Methods We performed a comprehensive analysis of genetically determined local and global ancestry in AAs with regard to LOAD status. Results Compared to controls, LOAD cases showed higher levels of African ancestry, both globally and at several LOAD relevant loci, which explained risk for AD beyond global differences. Discussion Exploratory post hoc analyses highlight regions with greatest differences in ancestry as potential candidate regions for future genetic analyses.

Journal ArticleDOI
01 Jun 2016-PLOS ONE
TL;DR: It is suggested that common coding variability in APP-Aβ genes is not a critical factor for AD development and Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.
Abstract: The cerebral deposition of As42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-As metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, As degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), As extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD.

Journal ArticleDOI
TL;DR: Three potential pleiotropic genes are found for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels, which suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits.
Abstract: Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects and complex disease associations in the same locus.

Journal ArticleDOI
TL;DR: Results show that N398 variant human DA neurons differentially express genes associated with ligand receptor interaction and synaptic function, and this study offers a proof-of-principle for utilizing human neurons to study gene variants contribution to addiction.
Abstract: Genetic variation in nicotinic receptor alpha 5 (CHRNA5) has been associated with increased risk of addiction-associated phenotypes in humans yet little is known the underlying neural basis. Induced pluripotent stem cells (iPSCs) were derived from donors homozygous for either the major (D398) or the minor (N398) allele of the nonsynonymous single nucleotide polymorphism (SNP), rs16969968, in CHRNA5. To understand the impact of these nicotinic receptor variants in humans, we differentiated these iPSCs to dopamine (DA) or glutamatergic neurons and then tested their functional properties and response to nicotine. Results show that N398 variant human DA neurons differentially express genes associated with ligand receptor interaction and synaptic function. While both variants exhibited physiological properties consistent with mature neuronal function, the N398 neuronal population responded more actively with an increased excitatory postsynaptic current response upon the application of nicotine in both DA and glutamatergic neurons. Glutamatergic N398 neurons responded to lower nicotine doses (0.1 μM) with greater frequency and amplitude but they also exhibited rapid desensitization, consistent with previous analyses of N398-associated nicotinic receptor function. This study offers a proof-of-principle for utilizing human neurons to study gene variants contribution to addiction.

Journal ArticleDOI
TL;DR: There is modest evidence that genetic variation in AO-AD is associated with liability to other aspects of alcohol involvement, based on a genome-wide association study (GWAS) conducted in two independent samples.
Abstract: Age at onset of alcohol dependence (AO-AD) is a defining feature of multiple drinking typologies. AO-AD is heritable and likely shares genetic liability with other aspects of alcohol consumption. We examine whether polygenic variation in AO-AD, based on a genome-wide association study (GWAS), was associated with AO-AD and other aspects of alcohol consumption in two independent samples. Genetic risk scores (GRS) were created based on AO-AD GWAS results from a discovery sample of 1788 regular drinkers from extended pedigrees from the Collaborative Study of the Genetics of Alcoholism (COGA). GRS were used to predict AO-AD, AD and Alcohol dependence symptom count (AD-SX), age at onset of intoxication (AO-I), as well as maxdrinks in regular drinking participants from two independent samples-the Study of Addictions: Genes and Environment (SAGE; n=2336) and an Australian sample (OZ-ALC; n=5816). GRS for AO-AD from COGA explained a modest but significant proportion of the variance in all alcohol-related phenotypes in SAGE. Despite including effect sizes associated with large numbers of single nucleotide polymorphisms (SNPs; >110 000), GRS explained, at most, 0.7% of the variance in these alcohol measures in this independent sample. In OZ-ALC, significant but even more modest associations were noted with variance estimates ranging from 0.03 to 0.16%. In conclusion, there is modest evidence that genetic variation in AO-AD is associated with liability to other aspects of alcohol involvement.

Journal ArticleDOI
TL;DR: This paper performed genome-wide linkage and identity-by-descent (IBD) analyses on 41 non-Hispanic white families exhibiting likely dominant inheritance of LOAD, and having no mutations at known familial Alzheimer's disease (AD) loci, and a low burden of APOE e4 alleles.
Abstract: Introduction Few high penetrance variants that explain risk in late-onset Alzheimer's disease (LOAD) families have been found Methods We performed genome-wide linkage and identity-by-descent (IBD) analyses on 41 non-Hispanic white families exhibiting likely dominant inheritance of LOAD, and having no mutations at known familial Alzheimer's disease (AD) loci, and a low burden of APOE e4 alleles Results Two-point parametric linkage analysis identified 14 significantly linked regions, including three novel linkage regions for LOAD (5q32, 11q122–11q141, and 14q133), one of which replicates a genome-wide association LOAD locus, the MS4A6A-MS4A4E gene cluster at 11q122 Five of the 14 regions (3q2531, 4q341, 8q223, 11q122–141, and 19q1341) are supported by strong multipoint results (logarithm of odds [LOD*] ≥15) Nonparametric multipoint analyses produced an additional significant locus at 14q322 (LOD* = 418) The 1-LOD confidence interval for this region contains one gene, C14orf177 , and the microRNA Mir_320 , whereas IBD analyses implicates an additional gene BCL11B , a regulator of brain-derived neurotrophic signaling, a pathway associated with pathogenesis of several neurodegenerative diseases Discussion Examination of these regions after whole-genome sequencing may identify highly penetrant variants for familial LOAD

Journal ArticleDOI
TL;DR: This work examines the presence of rare coding variants in SORL1 in three different European American cohorts: early-onset, late-ONSet AD (LOAD) and familial LOAD.
Abstract: The accumulation of the toxic Aβ peptide in Alzheimer’s disease (AD) largely relies upon an efficient recycling of amyloid precursor protein (APP). Recent genetic association studies have described rare variants in SORL1 with putative pathogenic consequences in the recycling of APP. In this work, we examine the presence of rare coding variants in SORL1 in three different European American cohorts: early-onset, late-onset AD (LOAD) and familial LOAD.

Journal ArticleDOI
TL;DR: To use a family with late-onset ADAD caused by a presenilin 1 (PSEN1) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD.
Abstract: Importance The amyloid hypothesis posits that disrupted β-amyloid homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant AD (ADAD) has an early symptomatic onset and is caused by single-gene mutations that result in overproduction of β-amyloid 42. To the extent that sporadic late-onset AD (LOAD) also results from dysregulated β-amyloid 42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. Objective To use a family with late-onset ADAD caused by a presenilin 1 ( PSEN1 ) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD. Design, Setting, and Participants This case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging–funded AD centers in the United States. Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD and 12 noncarrier family members were followed up at the Knight Alzheimer Disease Research Center (1985-2015) and 1115 individuals with neuropathologically confirmed LOAD were included from the National Alzheimer Coordinating Center database (September 2005-December 2014). Data analysis was completed in January 2016, including Knight Alzheimer Disease Research Center patient data collected up until the end of 2015. Main Outcomes and Measures Planned comparison of clinical characteristics between cohorts, including age at symptom onset, associated symptoms and signs, rates of progression, and disease duration. Results Of the PSEN1 A79V carriers in the family with late-onset ADAD, 4 were female (57%); among those with LOAD, 529 were female (47%). Seven mutation carriers (70%) developed AD dementia, while 3 were yet asymptomatic in their seventh and eighth decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptom onset (mutation carriers: mean, 75 years [range, 63-77 years] vs those with LOAD: mean, 74 years [range, 60-101 years]; P = .29), presenting symptoms (memory loss in 7 of 7 mutation carriers [100%] vs 958 of 1063 individuals with LOAD [90.1%]; P ≥ .99) and duration (mutation carriers: mean, 9.9 years [range, 2.3-12.8 years] vs those with LOAD: 9 years [range, 1-27 years]; P = .73), and rate of progression of dementia (median annualized change in Clinical Dementia Rating–Sum of Boxes score, mutation carriers: 1.2 [range, 0.1-3.3] vs those with LOAD: 1.9 [range, −3.5 to 11.9]; P = .73). Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD (4 of 7) vs 19% of individuals with LOAD (137 of 706) ( P = .03). Three of 12 noncarriers (25%) from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset, 76.0 years). Conclusions and Relevance In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.

Journal ArticleDOI
TL;DR: CSF YKL-40 levels are likely a biomarker for AD, but there is no evidence that they are an AD endophenotype, and the results suggest that studies of potential biomarkers may benefit from including genetic information.
Abstract: Alzheimer’s disease (AD) pathology appears several years before clinical symptoms, so identifying ways to detect individuals in the preclinical stage is imperative. The cerebrospinal fluid (CSF) Tau/Aβ42 ratio is currently the best known predictor of AD status and cognitive decline, and the ratio of CSF levels of chitinase-3-like 1 protein (CHI3L1, YKL-40) and amyloid beta (Aβ42) were reported as predictive, but individual variability and group overlap inhibits their utility for individual diagnosis making it necessary to find ways to improve sensitivity of these biomarkers. We used linear regression to identify genetic loci associated with CSF YKL-40 levels in 379 individuals (80 cognitively impaired and 299 cognitively normal) from the Charles F and Joanne Knight Alzheimer’s Disease Research Center. We tested correlations between YKL-40 and CSF Tau/Aβ42 ratio, Aβ42, tau, and phosphorylated tau (ptau181). We used studentized residuals from a linear regression model of the log-transformed, standardized protein levels and the additive reference allele counts from the most significant locus to adjust YKL-40 values and tested the differences in correlations with CSF Tau/Aβ42 ratio, Aβ42, tau, and ptau181. We found that genetic variants on the CH13L1 locus were significantly associated with CSF YKL-40 levels, but not AD risk, age at onset, or disease progression. The most significant variant is a reported expression quantitative trait locus for CHI3L1, the gene which encodes YKL-40, and explained 12.74 % of the variance in CSF YKL-40 in our study. YKL-40 was positively correlated with ptau181 (r = 0.521) and the strength of the correlation significantly increased with the addition of genetic information (r = 0.573, p = 0.006). CSF YKL-40 levels are likely a biomarker for AD, but we found no evidence that they are an AD endophenotype. YKL-40 levels are highly regulated by genetic variation, and by including genetic information the strength of the correlation between YKL-40 and ptau181 levels is significantly improved. Our results suggest that studies of potential biomarkers may benefit from including genetic information.

Posted ContentDOI
13 Sep 2016-bioRxiv
TL;DR: The authors developed, replicated and validated a clinically usable PHS for quantifying individual differences in age-specific risk of AD, and found individuals in the highest PHS quantiles developed AD at a considerably lower age and had the highest yearly AD incidence rate.
Abstract: Importance: Identifying individuals at risk for developing Alzheimers disease (AD) is of utmost importance. Although genetic studies have identified APOE and other AD associated single nucleotide polymorphisms (SNPs), genetic information has not been integrated into an epidemiological framework for personalized risk prediction. Objective: To develop, replicate and validate a novel polygenic hazard score for predicting age-specific risk for AD. Setting: Multi-center, multi-cohort genetic and clinical data. Participants: We assessed genetic data from 17,008 AD patients and 37,154 controls from the International Genetics of Alzheimers Project (IGAP), and 6,409 AD patients and 9,386 older controls from Phase 1 Alzheimers Disease Genetics Consortium (ADGC). As independent replication and validation cohorts, we also evaluated genetic, neuroimaging, neuropathologic, CSF and clinical data from ADGC Phase 2, National Institute of Aging Alzheimers Disease Center (NIA ADC) and Alzheimers Disease Neuroimaging Initiative (ADNI) (total n = 20,680) Main Outcome(s) and Measure(s): Use the IGAP cohort to first identify AD associated SNPs (at p < 10-5). Next, integrate these AD associated SNPs into a Cox proportional hazards model using ADGC phase 1 genetic data, providing a polygenic hazard score (PHS) for each participant. Combine population based incidence rates, and genotype-derived PHS for each individual to derive estimates of instantaneous risk for developing AD, based on genotype and age. Finally, assess replication and validation of PHS in independent cohorts. Results: Individuals in the highest PHS quantiles developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE 3/3 individuals, PHS modified expected age of AD onset by more than 10 years between the lowest and highest deciles. In independent cohorts, PHS strongly predicted empirical age of AD onset (p = 1.1 x 10-26), longitudinal progression from normal aging to AD (p = 1.54 x 10-10) and associated with markers of AD neurodegeneration. Conclusions: We developed, replicated and validated a clinically usable PHS for quantifying individual differences in age-specific risk of AD. Beyond APOE, polygenic architecture plays an important role in modifying AD risk. Precise quantification of AD genetic risk will be useful for early diagnosis and therapeutic strategies.

Journal ArticleDOI
TL;DR: Research suggests that, in addition to other factors, healthy aging is at least in part the result of protective genetic variants for Alzheimer's disease and coronary artery disease.

Journal ArticleDOI
TL;DR: In this paper, a case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging-funded AD centers in the United States.
Abstract: Importance The amyloid hypothesis posits that disrupted β-amyloid homeostasis initiates the pathological process resulting in Alzheimer disease (AD). Autosomal dominant AD (ADAD) has an early symptomatic onset and is caused by single-gene mutations that result in overproduction of β-amyloid 42. To the extent that sporadic late-onset AD (LOAD) also results from dysregulated β-amyloid 42, the clinical phenotypes of ADAD and LOAD should be similar when controlling for the effects of age. Objective To use a family with late-onset ADAD caused by a presenilin 1 ( PSEN1 ) gene mutation to mitigate the potential confound of age when comparing ADAD and LOAD. Design, Setting, and Participants This case-control study was conducted at the Knight Alzheimer Disease Research Center at Washington University, St Louis, Missouri, and other National Institutes of Aging–funded AD centers in the United States. Ten PSEN1 A79V mutation carriers from multiple generations of a family with late-onset ADAD and 12 noncarrier family members were followed up at the Knight Alzheimer Disease Research Center (1985-2015) and 1115 individuals with neuropathologically confirmed LOAD were included from the National Alzheimer Coordinating Center database (September 2005-December 2014). Data analysis was completed in January 2016, including Knight Alzheimer Disease Research Center patient data collected up until the end of 2015. Main Outcomes and Measures Planned comparison of clinical characteristics between cohorts, including age at symptom onset, associated symptoms and signs, rates of progression, and disease duration. Results Of the PSEN1 A79V carriers in the family with late-onset ADAD, 4 were female (57%); among those with LOAD, 529 were female (47%). Seven mutation carriers (70%) developed AD dementia, while 3 were yet asymptomatic in their seventh and eighth decades of life. No differences were observed between mutation carriers and individuals with LOAD concerning age at symptom onset (mutation carriers: mean, 75 years [range, 63-77 years] vs those with LOAD: mean, 74 years [range, 60-101 years]; P = .29), presenting symptoms (memory loss in 7 of 7 mutation carriers [100%] vs 958 of 1063 individuals with LOAD [90.1%]; P ≥ .99) and duration (mutation carriers: mean, 9.9 years [range, 2.3-12.8 years] vs those with LOAD: 9 years [range, 1-27 years]; P = .73), and rate of progression of dementia (median annualized change in Clinical Dementia Rating–Sum of Boxes score, mutation carriers: 1.2 [range, 0.1-3.3] vs those with LOAD: 1.9 [range, −3.5 to 11.9]; P = .73). Early emergence of comorbid hallucinations and delusions were observed in 57% of individuals with ADAD (4 of 7) vs 19% of individuals with LOAD (137 of 706) ( P = .03). Three of 12 noncarriers (25%) from the PSEN1 A79V family are potential phenocopies as they also developed AD dementia (median age at onset, 76.0 years). Conclusions and Relevance In this family, the amyloidogenic PSEN1 A79V mutation recapitulates the clinical attributes of LOAD. Previously reported clinical phenotypic differences between individuals with ADAD and LOAD may reflect age- or mutation-dependent effects.

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach called “SmartChip” that allows for real-time, 3D image analysis of the dynamic response of the immune system to Alzheimer’s disease.
Abstract: Kuan-Lin Huang, Sheng Chih Jin, Oscar Harari, Manav Kapoor, Sarah Bertelsen, Jake Czajkowski, jean-Charles Lambert, Vincent Chouraki, C eline Bellenguez, Benjamin Grenier-Boley, Yuetiva Deming, Andrew McKenzie, Alan E. Renton, John Budde, Jorge L. Del-Aguila, Maria Victoria Fernandez, Laura Ibanez, Denise Harold, Paul Hollingworth, Richard Mayeux, Jonathan L. Haines, Lindsay A. Farrer, Margaret A. Pericak-Vance, Sudha Seshadri, Julie Williams, Philippe Amouyel, Gerard D. Schellenberg, Bin Zhang, Ingrid Borecki, John Kauwe, Eduardo Marcora, Carlos Cruchaga, Alison M. Goate, The Alzheimer’s Disease Neuroimaging Initiative, Washington University in St. Louis, Saint Louis, MO, USA; 2 Yale University, New Haven, CT, USA; 3 Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institut Pasteur de Lille, Lille, France; Boston University School of Medicine, Boston, MA, USA; 6 Washington University School of Medicine, Saint Louis, MO, USA; 7 Cardiff University, Cardiff, United Kingdom; 8 Columbia University, New York, NY, USA; Case Western Reserve University, Cleveland, OH, USA; Boston University, Boston, MA, USA; University of Miami, Miller School of Medicine, Miami, FL, USA; 12 MRC Centre for Neuropsychiatric Genetics & Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; 14 Brigham Young University, Provo, UT, USA. Contact e-mail: kuan-lin. huang@wustl.edu