scispace - formally typeset
Open AccessJournal ArticleDOI

A unicorn in monoceros: the 3 M ⊙ dark companion to the bright, nearby red giant V723 Mon is a non-interacting, mass-gap black hole candidate

TLDR
The closest known black hole candidate as a binary companion to V723 Mon was discovered in this paper, where the authors used the SED and the absence of continuum eclipses to identify a likely non-stellar, diffuse veiling component with contributions in the $B$ and $V$-band.
Abstract
We report the discovery of the closest known black hole candidate as a binary companion to V723 Mon. V723 Mon is a nearby ($d\sim460\,\rm pc$), bright ($V\simeq8.3$~mag), evolved ($T_{\rm eff, giant}\simeq4440$ K, $L_{\rm giant}\simeq173~L_\odot$ and $R_{\rm giant}\simeq22 ~R_\odot$) red giant in a high mass function, $f(M)=1.72\pm 0.01~M_\odot$, nearly circular binary ($P=59.9$ d, $e\simeq 0$). V723 Mon is a known variable star, previously classified as an eclipsing binary, but its ASAS, KELT, and TESS light curves are those of a nearly edge-on ellipsoidal variable. Detailed models of the light curves constrained by the period, radial velocities and stellar temperature give an inclination of $i=87.0^\circ \pm 1.0^\circ$, a mass ratio of $q\simeq0.30\pm0.02$, a companion mass of $M_{\rm comp}=2.91\pm0.08~M_\odot$, a stellar radius of $R_{\rm giant}=23.6\pm1.0~R_\odot$, and a giant mass of $M_{\rm giant}=0.87\pm0.08~ M_\odot$. We identify a likely non-stellar, diffuse veiling component with contributions in the $B$ and $V$-band of ${\sim}64\%$ and ${\sim}23\%$, respectively. The SED and the absence of continuum eclipses imply that the companion mass must be dominated by a compact object. We do observe eclipses of the Balmer lines when the dark companion passes behind the giant, but their velocity spreads are low compared to observed accretion disks. The X-ray luminosity of the system is $L_{\rm X}\simeq1.0\times10^{30}~\rm ergs~s^{-1}$, corresponding to $L/L_{\rm edd}{\sim}10^{-9}$.The simplest explanation for the massive companion is a single compact object, most likely a black hole in the "mass gap", although a double neutron star binary is possible.

read more

Citations
More filters
Journal ArticleDOI

Overview of the LAMOST survey in the first decade

TL;DR: The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) as discussed by the authors has been surveying the night sky for more than 10 years and has released spectra for over 10 million stars, ∼220,000 galaxies, and ∼71,000 quasars.
Journal ArticleDOI

High tide: a systematic search for ellipsoidal variables in ASAS-SN

TL;DR: In this article, the authors search for the tidally induced ellipsoidal variability of their stellar companions, and combine the amplitude of the variability with mass and radius estimates for observed stars to calculate a minimum companion mass.
Journal ArticleDOI

Gaia May Detect Hundreds of Well-characterized Stellar Black Holes

TL;DR: In this article , the authors proposed a zero-age binary properties based on realistic, metallicity-dependent star formation history in the Milky Way (MW), evolving these binaries to current epoch to generate realistic MW populations of BH-LC binaries.
Journal ArticleDOI

Causality Constraints on Gravitational Effective Field Theories

TL;DR: In this article , the authors consider the effective field theory of gravity around black holes, and show that the coefficients of the dimension-8 operators are tightly constrained by causality considerations, which imply that the effects of one of the dimensions by itself cannot be observable while remaining consistent with causality.
Journal ArticleDOI

Top-heavy stellar mass distribution in galactic nuclei inferred from the universally high abundance ratio of [Fe/Mg]

TL;DR: In this article , a top-heavy initial mass function (IMF) with a power-law index Γ larger than the canonical value of Γ = −2 was proposed to explain the high Fe ii/Mg ii line-flux ratio.
References
More filters
Journal ArticleDOI

The relationship between infrared, optical, and ultraviolet extinction

TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Journal ArticleDOI

Astropy: A community Python package for astronomy

TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

emcee: The MCMC Hammer

TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Related Papers (5)

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

Richard J. Abbott, +1337 more