scispace - formally typeset
Open AccessJournal ArticleDOI

Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types

TLDR
By deep sequencing of RNA from a variety of normal and malignant human cells, this work suggests that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene expression program in human cells.
Abstract
Most human pre-mRNAs are spliced into linear molecules that retain the exon order defined by the genomic sequence. By deep sequencing of RNA from a variety of normal and malignant human cells, we found RNA transcripts from many human genes in which the exons were arranged in a non-canonical order. Statistical estimates and biochemical assays provided strong evidence that a substantial fraction of the spliced transcripts from hundreds of genes are circular RNAs. Our results suggest that a non-canonical mode of RNA splicing, resulting in a circular RNA isoform, is a general feature of the gene expression program in human cells.

read more

Citations
More filters
Journal ArticleDOI

Long Non-coding RNAs in the Cytoplasm.

TL;DR: This review highlights relatively well-studied examples of cytoplasmic lncRNAs for their roles in modulating mRNA stability, regulating mRNA translation, serving as competing endogenous RNAs, functioning as precursors of microRNAs, and mediating protein modifications.
Journal ArticleDOI

Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway

TL;DR: The results suggested that cir-ITCH may play an inhibitory role in lung cancer progression by enhancing its parental gene, ITCH, expression.
Journal ArticleDOI

The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting.

TL;DR: Results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs, because nascent RNAs become directed into alternative pathways that lead to circular RNA production.
Journal ArticleDOI

CSCD: a database for cancer-specific circular RNAs

TL;DR: A cancer-specific circRNA database is constructed (CSCD) that could significantly contribute to the research for the function and regulation of cancer-associated circRNAs.
Journal ArticleDOI

Non-Coding RNAs and their Integrated Networks.

TL;DR: This review discusses the distinct types of ncRNAs, including housekeeping n cRNAs and regulatory nc RNAs, their versatile functions and interactions, transcription, translation, and modification, and summarizes the integrated networks of n cRNA interactions, providing a comprehensive landscape of nCRNAs regulatory roles.
References
More filters
Journal ArticleDOI

A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

TL;DR: It is found that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role, and this analysis extended to other cancer-related genes that possess pseudogenes, and revealed a non-coding function for mRNAs.
Journal ArticleDOI

Circular transcripts of the testis-determining gene Sry in adult mouse testis

TL;DR: It is suggested that the circles arise from normal splicing processes as a consequence of the unusual genomic structure surrounding the Sry locus in the mouse.
Journal ArticleDOI

Mis-splicing yields circular RNA molecules.

TL;DR: To the knowledge, this is the first case of circular transcripts being processed from nuclear pre‐mRNA in eukaryotes, and might represent a novel aspect of gene expression and hold some interesting clues about the splicing mechanism.
Journal ArticleDOI

miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA

TL;DR: This study provides the first evidence for non‐coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels.
Journal ArticleDOI

Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk

TL;DR: The results identify novel circular RNA products emanating from the ANRIL locus and suggest causal variants at 9p21.3 regulate INK4/ARF expression and ASVD risk by modulating ANRil expression and/or structure.
Related Papers (5)