scispace - formally typeset
Open AccessJournal ArticleDOI

Clines, clusters, and the effect of study design on the inference of human population structure.

TLDR
Analysis of the 993-locus dataset corroborates earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.
Abstract
Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables—sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample—on the “clusteredness” of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A global reference for human genetic variation.

Adam Auton, +517 more
- 01 Oct 2015 - 
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Journal ArticleDOI

Principal components analysis corrects for stratification in genome-wide association studies

TL;DR: This work describes a method that enables explicit detection and correction of population stratification on a genome-wide scale and uses principal components analysis to explicitly model ancestry differences between cases and controls.
Journal ArticleDOI

Population structure and eigenanalysis

TL;DR: An approach to studying population structure (principal components analysis) is discussed that was first applied to genetic data by Cavalli-Sforza and colleagues, and results from modern statistics are used to develop formal significance tests for population differentiation.
Journal ArticleDOI

Discriminant analysis of principal components: a new method for the analysis of genetically structured populations

TL;DR: The Discriminant Analysis of Principal Components (DAPC) is introduced, a multivariate method designed to identify and describe clusters of genetically related individuals that performs generally better than STRUCTURE at characterizing population subdivision.
Journal ArticleDOI

Worldwide human relationships inferred from genome-wide patterns of variation.

TL;DR: A pattern of ancestral allele frequency distributions that reflects variation in population dynamics among geographic regions is observed and is consistent with the hypothesis of a serial founder effect with a single origin in sub-Saharan Africa.
References
More filters
Journal ArticleDOI

Inference of population structure using multilocus genotype data

TL;DR: Pritch et al. as discussed by the authors proposed a model-based clustering method for using multilocus genotype data to infer population structure and assign individuals to populations, which can be applied to most of the commonly used genetic markers, provided that they are not closely linked.
Journal ArticleDOI

Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies

TL;DR: Extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data are described and methods that allow for linkage between loci are developed, which allows identification of subtle population subdivisions that were not detectable using the existing method.
Journal ArticleDOI

distruct: a program for the graphical display of population structure

TL;DR: Distortion as discussed by the authors provides a general method for visualizing membership coefficients in multilocus genotypes from structured populations, and can be used to display subpopulation assignment probabilities when individuals are assumed to have ancestry in only one group.
Journal ArticleDOI

Genetic Structure of Human Populations

TL;DR: General agreement of genetic and predefined populations suggests that self-reported ancestry can facilitate assessments of epidemiological risks but does not obviate the need to use genetic information in genetic association studies.
Related Papers (5)