scispace - formally typeset
Open AccessJournal ArticleDOI

Cohabiting family members share microbiota with one another and with their dogs

Reads0
Chats0
TLDR
Dog ownership significantly increased the shared skin microbiota in cohabiting adults, and dog-owning adults shared more ‘skin’ microbiota with their own dogs than with other dogs, suggesting that direct and frequent contact with the authors' cohabitants may significantly shape the composition of their microbial communities.
Abstract
The human body is home to many different microorganisms, with a range of bacteria, fungi and archaea living on the skin, in the intestine and at various other sites in the body. While many of these microorganisms are beneficial to their human hosts, we know very little about most of them. Early research focused primarily on comparing the microorganisms found in healthy individuals with those found in individuals suffering from a particular illness. More recently researchers have become interested in more general issues, such as understanding how these collections of microorganisms, which are also known as the human microbiota or the human microbiome, become established, and exploring the causes of similarities and differences between the microbiota of individuals. We now know that the communities of microorganisms found in the intestines of genetically related people tend to be more similar than those of people who are not related. Moreover, the communities of microorganisms found in the intestines of non-related adults living in the same household are more similar than those of unrelated adults living in different households. We also know that the range of microorganisms found in the intestine changes dramatically between birth and the age of 3 years. However, these studies have focused on the intestine, and little is known about the effect of relatedness, cohabitation and age on the microbiota at other body sites. Song et al. compared the microorganisms found on the skin, on the tongue and in the intestines of 159 people—and 36 dogs—in 60 families. They found that co-habitation resulted in the communities of microorganisms being more similar to each other, with those on the skin being the most similar. This was true for all comparisons, including human pairs, dog pairs and human–dog pairs. This suggests that humans probably acquire many of the microorganisms on their skin through direct contact with their surroundings, and that humans tend to share more microbes with individuals, including their pets, with which they are in frequent contact. Song et al. also discovered that, unlike what happens in the intestine, the microbial communities on the skin and tongue of infants and children were relatively similar to those of adults. Overall, these findings suggest that the communities of microorganisms found in the intestine changes with age in a way that differs significantly from those found on the skin and tongue.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients

TL;DR: The results suggest that the commensal microbiome may have a mechanistic impact on antitumor immunity in human cancer patients and could lead to improved tumor control, augmented T cell responses, and greater efficacy of anti–PD-L1 therapy.
Journal ArticleDOI

Current understanding of the human microbiome.

TL;DR: This review focuses on studies in humans to describe challenges and propose strategies that leverage existing knowledge to move rapidly from correlation to causation and ultimately to translation into therapies.
Journal ArticleDOI

You are what you eat: diet, health and the gut microbiota.

TL;DR: The major principles underlying effects of dietary constituents on the gut microbiota are reviewed, resolving aspects of the diet–microbiota–host crosstalk, and the promises and challenges of incorporating microbiome data into dietary planning are presented.
References
More filters
Journal Article

R: A language and environment for statistical computing.

R Core Team
- 01 Jan 2014 - 
TL;DR: Copyright (©) 1999–2012 R Foundation for Statistical Computing; permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and permission notice are preserved on all copies.
Journal ArticleDOI

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 - 
TL;DR: The Human Microbiome Project Consortium reported the first results of their analysis of microbial communities from distinct, clinically relevant body habitats in a human cohort; the insights into the microbial communities of a healthy population lay foundations for future exploration of the epidemiology, ecology and translational applications of the human microbiome as discussed by the authors.
Journal ArticleDOI

A core gut microbiome in obese and lean twins

TL;DR: The faecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers are characterized to address how host genotype, environmental exposure and host adiposity influence the gut microbiome.
Journal ArticleDOI

UniFrac: a New Phylogenetic Method for Comparing Microbial Communities

TL;DR: The results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
Related Papers (5)

Structure, function and diversity of the healthy human microbiome

Curtis Huttenhower, +253 more
- 14 Jun 2012 -