scispace - formally typeset
Open AccessJournal ArticleDOI

Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.

TLDR
Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide‐field fluorescence microscope with strikingly increased clarity compared to both conventional and confocal microscopes.
Abstract
Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide-field fluorescence microscope. The sample is illuminated with a series of excitation light patterns, which cause normally inaccessible high-resolution information to be encoded into the observed image. The recorded images are linearly processed to extract the new information and produce a reconstruction with twice the normal resolution. Unlike confocal microscopy, the resolution improvement is achieved with no need to discard any of the emission light. The method produces images of strikingly increased clarity compared to both conventional and confocal microscopes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Visualizing cell structure and function with point-localization superresolution imaging.

TL;DR: Point-localization superresolution microscopy techniques, such as PALM and STORM, are poised to resolve, with unprecedented clarity, the organizational principles of macromolecular complexes within cells, thus leading to deeper insights into cellular function in both health and disease.
Journal ArticleDOI

Electron Ghost Imaging

TL;DR: A compressed sensing framework is used to improve the reconstruction quality and reduce the number of shots compared to raster scanning a small beam across the target to reduce both acquisition time and sample damage in experiments for which spatially resolved detectors are unavailable.
Journal ArticleDOI

Fluorescence microscopy-a historical and technical perspective.

TL;DR: Basic principles and their historical development are outlined to provide insight into and understanding of the ever‐growing tools of fluorescence microscopy and help the interested researcher to choose a fluorescence microscopic method capable of addressing a specific scientific question.
Journal ArticleDOI

Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins.

TL;DR: This work identified key aspects of the sample preparation procedure of high pressure freezing, freeze substitution and resin embedding that are critical for preserving fluorescence and photo-switching of standard fluorescent proteins, such as mGFP, mVenus and mRuby2.
Journal ArticleDOI

mRNA quantification using single-molecule FISH in Drosophila embryos.

TL;DR: AnsmFISH protocol is described that allows for the quantification of single mRNAs in Drosophila embryos, using commercially available smFISH probes (e.g., short fluorescently labeled DNA oligonucleotides) in combination with wide-field epifluorescence, confocal or instant structured illumination microscopy and a spot-detection algorithm.
References
More filters
BookDOI

Handbook of biological confocal microscopy

TL;DR: Methods for Three-Dimensional Imaging and Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen.
Journal ArticleDOI

Method of obtaining optical sectioning by using structured light in a conventional microscope

TL;DR: A simple method of obtaining optical sectioning in a conventional wide-field microscope by projecting a single-spatial-frequency grid pattern onto the object and processing images that are substantially similar to those obtained with confocal microscopes is described.
Journal ArticleDOI

Subdiffraction resolution in far-field fluorescence microscopy.

TL;DR: The resolution limit of scanning far-field fluorescence microscopy is overcame by disabling the fluorescence from the outer part of the focal spot by a spatially offset pulse.
Book ChapterDOI

Fluorescence microscopy in three dimensions.

TL;DR: This chapter has discussed the nature of image formation in three dimensions and dealt with several means to remove contaminating out-of-focus information and developed a method for extremely rapidly and accurately producing an in-focus, high-resolution "synthetic projection" image from a thick specimen.
Related Papers (5)