scispace - formally typeset
Open AccessJournal ArticleDOI

Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.

TLDR
Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide‐field fluorescence microscope with strikingly increased clarity compared to both conventional and confocal microscopes.
Abstract
Lateral resolution that exceeds the classical diffraction limit by a factor of two is achieved by using spatially structured illumination in a wide-field fluorescence microscope. The sample is illuminated with a series of excitation light patterns, which cause normally inaccessible high-resolution information to be encoded into the observed image. The recorded images are linearly processed to extract the new information and produce a reconstruction with twice the normal resolution. Unlike confocal microscopy, the resolution improvement is achieved with no need to discard any of the emission light. The method produces images of strikingly increased clarity compared to both conventional and confocal microscopes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Super-Resolution Video Microscopy of Live Cells by Structured Illumination

TL;DR: A high-speed structured-illumination microscope capable of 100-nm resolution at frame rates up to 11 Hz for several hundred time points is demonstrated by video imaging of tubulin and kinesin dynamics in living Drosophila melanogaster S2 cells in the total internal reflection mode.
Journal ArticleDOI

Plk4-Induced Centriole Biogenesis in Human Cells

TL;DR: It is shown that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole, and that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap.
Journal ArticleDOI

Measuring image resolution in optical nanoscopy.

TL;DR: This work introduces a measure based on Fourier ring correlation (FRC) that can be computed directly from an image and demonstrates its validity and benefits on two-dimensional (2D) and 3D localization microscopy images of tubulin and actin filaments.
References
More filters
BookDOI

Handbook of biological confocal microscopy

TL;DR: Methods for Three-Dimensional Imaging and Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen.
Journal ArticleDOI

Method of obtaining optical sectioning by using structured light in a conventional microscope

TL;DR: A simple method of obtaining optical sectioning in a conventional wide-field microscope by projecting a single-spatial-frequency grid pattern onto the object and processing images that are substantially similar to those obtained with confocal microscopes is described.
Journal ArticleDOI

Subdiffraction resolution in far-field fluorescence microscopy.

TL;DR: The resolution limit of scanning far-field fluorescence microscopy is overcame by disabling the fluorescence from the outer part of the focal spot by a spatially offset pulse.
Book ChapterDOI

Fluorescence microscopy in three dimensions.

TL;DR: This chapter has discussed the nature of image formation in three dimensions and dealt with several means to remove contaminating out-of-focus information and developed a method for extremely rapidly and accurately producing an in-focus, high-resolution "synthetic projection" image from a thick specimen.
Related Papers (5)