scispace - formally typeset
Open AccessJournal ArticleDOI

The electronic properties of graphene

TLDR
In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding

TL;DR: In this article, a review of the advance in graphene-based EMI shielding materials is presented, where the authors intensively evaluate the mechanism, such as polarization, hopping conduction and interface scattering.
Journal ArticleDOI

A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour

TL;DR: Four-probe measurements show that the room temperature conductivity of this material can reach up to 1,580 S cm−1, which is the highest value ever reported for coordination polymers, and it displays ambipolar charge transport behaviour and extremely high electron and hole mobilities under field-effect modulation.
Journal ArticleDOI

Very large tunneling magnetoresistance in layered magnetic semiconductor CrI 3 .

TL;DR: Large tunneling magnetoresistance is reported through exfoliated CrI3 crystals and its evolution is attributed to the multiple transitions to different magnetic states, demonstrating the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.
Journal ArticleDOI

Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible

TL;DR: In this article, the optical absorption spectra of epitaxial graphene from the visible to the terahertz frequency range were analyzed and it was shown that in the near-IR range, the absorption is due to interband processes and the measured optical conductivity is close to the theoretical value of e2/4ℏ.
Journal ArticleDOI

MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High‐Detectivity, Self‐Driven Visible–Near Infrared Photodetectors

TL;DR: In this paper, a self-driven MoS2/Si heterojunction photodetector is proposed, which is sensitive to a broadband wavelength from visible light to near-infrared light, showing an extremely high detectivity up to ≈1013 Jones (Jones = cm Hz 1/2 W−1), and ultrafast response speed of ≈3 μs.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Book

Theory of elasticity

TL;DR: The theory of the slipline field is used in this article to solve the problem of stable and non-stressed problems in plane strains in a plane-strain scenario.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Related Papers (5)