scispace - formally typeset
Open AccessJournal ArticleDOI

The electronic properties of graphene

TLDR
In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Graphene: Status and Prospects

TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
References
More filters
Journal ArticleDOI

Band Structure of Graphite

TL;DR: In this paper, a perturbation calculation which starts with wave functions of the two-dimensional lattice and is applied to the three-dimensional graphite lattice is described and general features of the structure of the $\ensuremath{\pi}$ bands in the neighborhood of the zone edge are obtained and are expressed in terms of appropriate parameters.
Journal ArticleDOI

Electronic and transport properties of nanotubes

TL;DR: In this paper, the electronic and transport properties of carbon nanotubes are reviewed, and the fundamental aspects of conduction regimes and transport length scales are presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of short and long-range static perturbations.
Journal ArticleDOI

Electronic states of graphene nanoribbons studied with the Dirac equation

TL;DR: In this paper, the electronic states of narrow graphene ribbons with zigzag and armchair edges were analyzed using the Dirac equation with appropriate boundary conditions, showing that the boundary condition allows a particlelike and a hole-like band with evanescent wave functions confined to the surfaces, which continuously turn into zero energy surface states as the width gets large.
Journal ArticleDOI

Electronic properties of disordered two-dimensional carbon

TL;DR: In this article, the effects of localized (impurities or vacancies) and extended (edges or grain boundaries) defects on the electronic and transport properties of graphene are analyzed in a self-consistent way.
Journal ArticleDOI

Electronic structure of graphene tubules based on C 60

TL;DR: A simple tight-binding model shows that some fibers are metallic and are stable against perturbations of the one-dimensional energy bands and the mixing of σ and π bands due to the curvature of the circumference of the fiber.
Related Papers (5)