scispace - formally typeset
Search or ask a question

Showing papers on "Permafrost published in 2016"


Journal ArticleDOI
TL;DR: In this article, the authors highlight promising advances in characterization and modeling of permafrost regions and present ongoing research challenges toward projecting hydrologic and ecologic consequences of permaferost thaw at time and spatial scales that are useful to managers and researchers.
Abstract: Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

530 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over subdecadal timescales.
Abstract: Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions. The polygonal patterns in permafrost regions are caused by the formation of ice wedges. Observations of polygon evolution reveal that rapid ice-wedge melting has occurred across the Arctic since 1950, altering tundra hydrology.

527 citations


Journal ArticleDOI
TL;DR: In this paper, a new permafrost map based on freezing and thawing indices from modified MODIS land surface temperatures (LSTs) was generated and validated using various ground-based data sets.
Abstract: . The Tibetan Plateau (TP) has the largest areas of permafrost terrain in the mid- and low-latitude regions of the world. Some permafrost distribution maps have been compiled but, due to limited data sources, ambiguous criteria, inadequate validation, and deficiency of high-quality spatial data sets, there is high uncertainty in the mapping of the permafrost distribution on the TP. We generated a new permafrost map based on freezing and thawing indices from modified Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperatures (LSTs) and validated this map using various ground-based data sets. The soil thermal properties of five soil types across the TP were estimated according to an empirical equation and soil properties (moisture content and bulk density). The temperature at the top of permafrost (TTOP) model was applied to simulate the permafrost distribution. Permafrost, seasonally frozen ground, and unfrozen ground covered areas of 1.06 × 106 km2 (0.97–1.15 × 106 km2, 90 % confidence interval) (40 %), 1.46 × 106 (56 %), and 0.03 × 106 km2 (1 %), respectively, excluding glaciers and lakes. Ground-based observations of the permafrost distribution across the five investigated regions (IRs, located in the transition zones of the permafrost and seasonally frozen ground) and three highway transects (across the entire permafrost regions from north to south) were used to validate the model. Validation results showed that the kappa coefficient varied from 0.38 to 0.78 with a mean of 0.57 for the five IRs and 0.62 to 0.74 with a mean of 0.68 within the three transects. Compared with earlier studies, the TTOP modelling results show greater accuracy. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.

460 citations


Journal ArticleDOI
TL;DR: In this paper, the global, continental and national extent of dryland areas was quantified by using a high-resolution climate database presently available at global level, based on relevant scientific literature, this approach attempts to briefly highlight the main environmental issues (natural and anthropogenic) of major continental and regional dryland regions.

377 citations


Journal ArticleDOI
TL;DR: It is estimated that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes, highlighting the importance of explicitly considering thermokARst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and providing a means for assessing such impacts at the circumpolar scale.
Abstract: Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ∼20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale.

342 citations


Journal ArticleDOI
TL;DR: In this paper, a meta-analysis of soil incubation studies from the permafrost zone suggests that thawing under aerobic conditions, which releases CO2, will strengthen the carbon feedback more than waterlogged systems, which release CO2 and CH4.
Abstract: A meta-analysis of soil incubation studies from the permafrost zone suggests that thawing under aerobic conditions, which releases CO2, will strengthen the permafrost carbon feedback more than waterlogged systems, which releases CO2 and CH4. Increasing temperatures in northern high latitudes are causing permafrost to thaw1, making large amounts of previously frozen organic matter vulnerable to microbial decomposition2. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions3,4 that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear5,6. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.

290 citations


Journal ArticleDOI
TL;DR: It is found that emissions during the cold season account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra, and regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions.
Abstract: Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.

288 citations


Journal ArticleDOI
TL;DR: In this paper, metagenomics reveal the vulnerability of active-layer soil carbon to warming-induced microbial decomposition in Alaskan tundra, and release of carbon previously locked in permafrost is a potentially important positive climate feedback.
Abstract: Release of carbon previously locked in permafrost is a potentially important positive climate feedback. Now metagenomics reveal the vulnerability of active-layer soil carbon to warming-induced microbial decomposition in Alaskan tundra.

223 citations


Journal ArticleDOI
TL;DR: In this paper, the main sources and drivers of high-latitude dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres are identified and compared.
Abstract: Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

216 citations


Journal ArticleDOI
TL;DR: A unique experimental design coupled to high-throughput sequencing of ribosomal markers is applied to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years, yielding an unprecedented view on microbial life in temperate mountain permaf frost.

196 citations


Journal ArticleDOI
Benjamin W. Abbott1, Jeremy B. Jones1, Edward A. G. Schuur2, F. Stuart Chapin1, William B. Bowden3, M. Syndonia Bret-Harte1, Howard E. Epstein4, Mike D. Flannigan5, Tamara K. Harms1, Teresa N. Hollingsworth6, Michelle C. Mack2, A. David McGuire7, Susan M. Natali8, Adrian V. Rocha9, Suzanne E. Tank5, Merritt R. Turetsky10, Jorien E. Vonk11, Kimberly P. Wickland7, George R. Aiken7, Heather D. Alexander12, Rainer M. W. Amon13, Brian W. Benscoter14, Yves Bergeron15, Kevin Bishop16, Olivier Blarquez17, Ben Bond-Lamberty18, Amy L. Breen1, Ishi Buffam19, Yihua Cai20, Christopher Carcaillet21, Sean K. Carey22, Jing M. Chen23, Han Y. H. Chen24, Torben R. Christensen25, Lee W. Cooper26, J. Hans C. Cornelissen11, William J. de Groot27, Thomas H. DeLuca28, Ellen Dorrepaal29, Ned Fetcher30, Jacques C. Finlay31, Bruce C. Forbes, Nancy H. F. French32, Sylvie Gauthier27, Martin P. Girardin27, Scott J. Goetz8, Johann G. Goldammer33, Laura Gough34, Paul Grogan35, Laodong Guo36, Philip E. Higuera37, Larry D. Hinzman1, Feng Sheng Hu38, Gustaf Hugelius39, Elchin Jafarov40, Randi Jandt1, Jill F. Johnstone41, Jan Karlsson29, Eric S. Kasischke, Gerhard Kattner42, Ryan C. Kelly, Frida Keuper43, George W. Kling44, Pirkko Kortelainen45, Jari Kouki46, Peter Kuhry39, Hjalmar Laudon16, Isabelle Laurion15, Robie W. Macdonald47, Paul J. Mann48, Pertti J. Martikainen46, James W. McClelland49, Ulf Molau50, Steven F. Oberbauer14, David Olefeldt5, David Paré27, Marc-André Parisien27, Serge Payette51, Changhui Peng52, Oleg S. Pokrovsky53, Edward B. Rastetter54, Peter A. Raymond55, Martha K. Raynolds1, Guillermo Rein56, James F. Reynolds57, Martin D. Robards, Brendan M. Rogers8, Christina Schaedel2, Kevin Schaefer40, Inger Kappel Schmidt58, Anatoly Shvidenko, Jasper Sky, Robert G. M. Spencer14, Gregory Starr59, Robert G. Striegl7, Roman Teisserenc60, Lars J. Tranvik61, Tarmo Virtanen, Jeffrey M. Welker62, Sergei Zimov63 
University of Alaska Fairbanks1, Northern Arizona University2, University of Vermont3, University of Virginia4, University of Alberta5, United States Department of Agriculture6, United States Geological Survey7, Woods Hole Oceanographic Institution8, University of Notre Dame9, University of Guelph10, VU University Amsterdam11, Mississippi State University12, University of North Texas13, Florida State University14, Université du Québec15, Swedish University of Agricultural Sciences16, McGill University17, United States Department of Energy18, University of Cincinnati19, Xiamen University20, École Normale Supérieure21, McMaster University22, University of Toronto23, Lakehead University24, Aarhus University25, University of Maryland Center for Environmental Science26, Natural Resources Canada27, University of Washington28, Umeå University29, Wilkes University30, University of Minnesota31, Michigan Technological University32, Max Planck Society33, University System of Maryland34, Queen's University35, University of Wisconsin–Milwaukee36, University of Montana System37, University of Illinois at Chicago38, Stockholm University39, University of Colorado Boulder40, University of Saskatchewan41, Alfred Wegener Institute for Polar and Marine Research42, Institut national de la recherche agronomique43, University of Michigan44, Finnish Environment Institute45, University of Eastern Finland46, Fisheries and Oceans Canada47, Northumbria University48, University of Texas at Austin49, University of Gothenburg50, Laval University51, Northwest A&F University52, Tomsk State University53, Marine Biological Laboratory54, Yale University55, Imperial College London56, Duke University57, University of Copenhagen58, University of Alabama59, Centre national de la recherche scientifique60, Uppsala University61, University of Alaska Anchorage62, Russian Academy of Sciences63
TL;DR: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export as mentioned in this paper, and models predict that some portion of this release w...
Abstract: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...

Journal Article
Benjamin W. Abbott, Jeremy B. Jones, Edward A. G. Schuur, F. Stuart Chapin, William B. Bowden, M. Syndonia Bret-Harte, Howard E. Epstein, Mike D. Flannigan, Tamara K. Harms, Teresa N. Hollingsworth, Michelle C. Mack, A. David McGuire, Susan M. Natali, Adrian V. Rocha, Suzanne E. Tank, Merritt R. Turetsky, Jorien E. Vonk, Kimberly P. Wickland, George R. Aiken, Heather D. Alexander, Rainer M. W. Amon, Brian W. Benscoter, Yves Bergeron, Kevin Bishop, Olivier Blarquez, Ben Bond-Lamberty, Amy L. Breen, Ishi Buffam, Yihua Cai, Christopher Carcaillet, Sean K. Carey, Jing M. Chen, Han Y. H. Chen, Torben R. Christensen, Lee W. Cooper, J. Hans C. Cornelissen, William J. de Groot, Thomas H. DeLuca, Ellen Dorrepaal, Ned Fetcher, Jacques C. Finlay, Bruce C. Forbes, Nancy H. F. French, Sylvie Gauthier, Martin P. Girardin, Scott J. Goetz, Johann G. Goldammer, Laura Gough, Paul Grogan, Laodong Guo, Philip E. Higuera, Larry D. Hinzman, Feng Sheng Hu, Gustaf Hugelius, Elchin Jafarov, Randi Jandt, Jill F. Johnstone, Jan Karlsson, Eric S. Kasischke, Gerhard Kattner, Ryan C. Kelly, Frida Keuper, George W. Kling, Pirkko Kortelainen, Jari Kouki, Peter Kuhry, Hjalmar Laudon, Isabelle Laurion, Robie W. Macdonald, Paul J. Mann, Pertti J. Martikainen, James W. McClelland, Ulf Molau, Steven F. Oberbauer, David Olefeldt, David Paré, Marc-André Parisien, Serge Payette, Changhui Peng, Oleg S. Pokrovsky, Edward B. Rastetter, Peter A. Raymond, Martha K. Raynolds, Guillermo Rein, James F. Reynolds, Martin D. Robards, Brendan M. Rogers, Christina Schaedel, Kevin Schaefer, Inger Kappel Schmidt, Anatoly Shvidenko, Jasper Sky, Robert G. M. Spencer, Gregory Starr, Robert G. Striegl, Roman Teisserenc, Lars J. Tranvik, Tarmo Virtanen, Jeffrey M. Welker, Sergei Zimov 
TL;DR: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export as mentioned in this paper, and models predict that some portion of this release w...
Abstract: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...

Journal ArticleDOI
TL;DR: The pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau are evaluated by combining systematic measurements from a substantial number of pedons with a machine learning technique and the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made.
Abstract: The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.

Journal ArticleDOI
TL;DR: There is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture.
Abstract: Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales to understand how permafrost interacts with ecosystems and climate on various spatial and temporal scales.
Abstract: The permafrost component of the cryosphere is changing dramatically, but the permafrost region is not well monitored and the consequences of change are not well understood. Changing permafrost interacts with ecosystems and climate on various spatial and temporal scales. The feedbacks resulting from these interactions range from local impacts on topography, hydrology, and biology to complex influences on global scale biogeochemical cycling. This review contributes to this focus issue by synthesizing its 28 multidisciplinary studies which provide field evidence, remote sensing observations, and modeling results on various scales. We synthesize study results from a diverse range of permafrost landscapes and ecosystems by reporting key observations and modeling outcomes for permafrost thaw dynamics, identifying feedbacks between permafrost and ecosystem processes, and highlighting biogeochemical feedbacks from permafrost thaw. We complete our synthesis by discussing the progress made, stressing remaining challenges and knowledge gaps, and providing an outlook on future needs and research opportunities in the study of permafrost–ecosystem–climate interactions.

Journal ArticleDOI
TL;DR: It is revealed that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2–C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan uplandpermafrost.
Abstract: The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.

Journal ArticleDOI
TL;DR: In this paper, the authors combine radiocarbon dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and remote sensing of thermokarst shore expansion.
Abstract: Warming thaws permafrost, releasing carbon that can cause more warming. Radiocarbon, soil carbon, and remote sensing data suggest that 0.2–2.5 Pg of carbon has been emitted from permafrost as CO2 and CH4 around Arctic lakes since the 1950s. Permafrost thaw exposes previously frozen soil organic matter to microbial decomposition. This process generates methane and carbon dioxide, and thereby fuels a positive feedback process that leads to further warming and thaw1. Despite widespread permafrost degradation during the past ∼40 years2,3,4, the degree to which permafrost thaw may be contributing to a feedback between warming and thaw in recent decades is not well understood. Radiocarbon evidence of modern emissions of ancient permafrost carbon is also sparse5. Here we combine radiocarbon dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and remote sensing of thermokarst shore expansion. Methane emissions from thermokarst areas of lakes that have expanded over the past 60 years were directly proportional to the mass of soil carbon inputs to the lakes from the erosion of thawing permafrost. Radiocarbon dating indicates that methane age from lakes is nearly identical to the age of permafrost soil carbon thawing around them. Based on this evidence of landscape-scale permafrost carbon feedback, we estimate that 0.2 to 2.5 Pg permafrost carbon was released as methane and carbon dioxide in thermokarst expansion zones of pan-Arctic lakes during the past 60 years.

Journal ArticleDOI
TL;DR: Qualifying the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigating changes in the chemical composition of each DOM source following sunlight exposure suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permaf frost soils thaw.
Abstract: Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxyl...

Journal ArticleDOI
TL;DR: In this paper, the authors used a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, showing major increases in dissolved organic and inorganic carbon (OC, IC) and alkalinity fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean.
Abstract: Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

Journal ArticleDOI
TL;DR: An extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protectpermafrost.
Abstract: Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0–6 cm) promoted increased ALTs, whereas deeper soil moisture (11–16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate.

Journal ArticleDOI
TL;DR: In this paper, the authors present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafure processes.
Abstract: Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed If the meltwater pools at the surface, a pond is formed that enhances heat transfer in the ground and leads to the formation of a talik The model results suggest that the trajectories of future permafrost thaw are strongly influenced by the cryostratigraphy, as determined by the late Quaternary history of a site

Journal ArticleDOI
TL;DR: It is found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.
Abstract: Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival.

Journal ArticleDOI
Rong Zhao1, Zhiwei Li1, Guangcai Feng1, Qijie Wang1, Jun Hu1 
TL;DR: Wang et al. as mentioned in this paper employed an improved small baseline subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to monitor the surface deformation over the Danxiong-Yangbajing area in the southern Qinghai-Tibet Plateau (QTP), with emphasis on climatic factors modeling.

Journal ArticleDOI
TL;DR: In this article, the authors investigated fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012.
Abstract: Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.

Journal ArticleDOI
TL;DR: In this article, a review of permafrost degradation processes and their geotechnical impacts is presented, and mitigation techniques for protecting transportation infrastructure built on permacultured soil are discussed.
Abstract: Climate warming since the second half of the 20th century has begun to significantly impact infrastructure integrity in permafrost environments and has already resulted in expensive maintenance operations. Engineers in countries with permafrost are actively working to adapt the design of structures to degrading permafrost conditions. Here, we review permafrost degradation processes and their geotechnical impacts. We also summarise mitigation techniques for protecting transportation infrastructure built on permafrost and for preventing permafrost degradation near these facilities based on the results of field and laboratory tests, numerical simulations and engineering practices on such infrastructure. We draw four conclusions: (1) climate warming and local surface changes have caused permafrost degradation, and resulted in instability and damage leading to infrastructure maintenance and repair; (2) passive cooling methods, including high-albedo surfacing, sun-sheds, air convection embankments, air ducts, heat drains and thermosyphons, have shown consistent cooling effects, if designed appropriately; (3) mitigation and adaptation methods are more expensive than conventional construction techniques as shown by construction cost data for a test site in Canada; and (4) the influence of continued climate warming on permafrost and infrastructure design must be considered within the design of new or rehabilitated infrastructure and within the context of the infrastructure's service life. Copyright © 2016 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this article, an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions.
Abstract: . In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

Journal ArticleDOI
TL;DR: In this article, the authors provide a review on what is known or can be inferred about permafrost in the mountains of the Hindu Kush Himalaya (HKH) region, and they further argue that climate change in concert with increasing development will bring about diverse permaffrost-related impacts on vegetation, water quality, geohazards, and livelihoods.
Abstract: . The cryosphere reacts sensitively to climate change, as evidenced by the widespread retreat of mountain glaciers. Subsurface ice contained in permafrost is similarly affected by climate change, causing persistent impacts on natural and human systems. In contrast to glaciers, permafrost is not observable spatially and therefore its presence and possible changes are frequently overlooked. Correspondingly, little is known about permafrost in the mountains of the Hindu Kush Himalaya (HKH) region, despite permafrost area exceeding that of glaciers in nearly all countries. Based on evidence and insight gained mostly in other permafrost areas globally, this review provides a synopsis on what is known or can be inferred about permafrost in the mountains of the HKH region. Given the extreme nature of the environment concerned, it is to be expected that the diversity of conditions and phenomena encountered in permafrost exceed what has previously been described and investigated. We further argue that climate change in concert with increasing development will bring about diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To better anticipate and mitigate these effects, a deepened understanding of high-elevation permafrost in subtropical latitudes as well as the pathways interconnecting environmental changes and human livelihoods are needed.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a mass budget for methylmercury species in the Arctic Ocean based on available data since 2004, and discussed implications and uncertainties, showing that high total mercury (Hg) in Arctic seawater relative to other basins reflect large freshwater inputs and sea ice cover that inhibits losses through evasion.
Abstract: Elevated biological concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, are observed throughout the Arctic Ocean, but major sources and degradation pathways in seawater are not well understood. We develop a mass budget for mercury species in the Arctic Ocean based on available data since 2004 and discuss implications and uncertainties. Our calculations show that high total mercury (Hg) in Arctic seawater relative to other basins reflect large freshwater inputs and sea ice cover that inhibits losses through evasion. We find that most net MeHg production (20 Mg a−1) occurs in the subsurface ocean (20–200 m). There it is converted to dimethylmercury (Me2Hg: 17 Mg a−1), which diffuses to the polar mixed layer and evades to the atmosphere (14 Mg a−1). Me2Hg has a short atmospheric lifetime and rapidly degrades back to MeHg. We postulate that most evaded Me2Hg is redeposited as MeHg and that atmospheric deposition is the largest net MeHg source (8 Mg a−1) to the biologically productive surface ocean. MeHg concentrations in Arctic Ocean seawater are elevated compared to lower latitudes. Riverine MeHg inputs account for approximately 15% of inputs to the surface ocean (2.5 Mg a−1) but greater importance in the future is likely given increasing freshwater discharges and permafrost melt. This may offset potential declines driven by increasing evasion from ice-free surface waters. Geochemical model simulations illustrate that for the most biologically relevant regions of the ocean, regulatory actions that decrease Hg inputs have the capacity to rapidly affect aquatic Hg concentrations.

Journal ArticleDOI
TL;DR: In this paper, the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere are reviewed.
Abstract: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and sea-air exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the variability in the sensitivity of permafrost and carbon in recent decades among land surface model simulations over the perma-rost region between 1960 and 2009.
Abstract: A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3 m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8 × 103 km2 yr−1). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954 Tg C yr−1 between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982–2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.