scispace - formally typeset
Search or ask a question

Showing papers by "International Union for Conservation of Nature and Natural Resources published in 2015"


Journal ArticleDOI
03 Jul 2015-Science
TL;DR: The physics, chemistry, and ecology of the oceans might be affected based on two CO2 emission trajectories: one business as usual and one with aggressive reductions, consistent with the Copenhagen Accord of keeping mean global temperature increase below 2°C in the 21st century.
Abstract: The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.

1,053 citations


Journal ArticleDOI
TL;DR: In this article, three main approaches used to derive these currencies (correlative, mechanistic and trait-based) and their associated data requirements, spatial and temporal scales of application and modelling methods are described.
Abstract: The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

808 citations


Journal ArticleDOI
TL;DR: In this paper, the authors estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59-68% of ecoregions, 77-78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage.
Abstract: Governments have committed to conserving 17% of terrestrial and 10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area-based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km 2 terrestrial PA network needs only 3.3 million km 2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, costefficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures.

367 citations


Journal ArticleDOI
TL;DR: Almost all lion populations that historically exceeded ∼500 individuals are declining, but lion conservation is successful in southern Africa, in part because of the proliferation of reintroduced lions in small, fenced, intensively managed, and funded reserves.
Abstract: We compiled all credible repeated lion surveys and present time series data for 47 lion (Panthera leo) populations. We used a Bayesian state space model to estimate growth rate-λ for each population and summed these into three regional sets to provide conservation-relevant estimates of trends since 1990. We found a striking geographical pattern: African lion populations are declining everywhere, except in four southern countries (Botswana, Namibia, South Africa, and Zimbabwe). Population models indicate a 67% chance that lions in West and Central Africa decline by one-half, while estimating a 37% chance that lions in East Africa also decline by one-half over two decades. We recommend separate regional assessments of the lion in the World Conservation Union (IUCN) Red List of Threatened Species: already recognized as critically endangered in West Africa, our analysis supports listing as regionally endangered in Central and East Africa and least concern in southern Africa. Almost all lion populations that historically exceeded ∼ 500 individuals are declining, but lion conservation is successful in southern Africa, in part because of the proliferation of reintroduced lions in small, fenced, intensively managed, and funded reserves. If management budgets for wild lands cannot keep pace with mounting levels of threat, the species may rely increasingly on these southern African areas and may no longer be a flagship species of the once vast natural ecosystems across the rest of the continent.

244 citations


Journal ArticleDOI
07 Aug 2015-PLOS ONE
TL;DR: This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed and gives, for the first time, an accurate view of how threatened plants are across the world.
Abstract: Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question 'How threatened are plants?' is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world's plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.

243 citations


Journal ArticleDOI
Bárbara Goettsch1, Craig Hilton-Taylor1, Gabriela Cruz-Piñón2, James P. Duffy3, Anne Frances4, Héctor M. Hernández5, Richard Inger3, Caroline M. Pollock1, Jan Schipper6, Mariella Superina7, Nigel P. Taylor, Marcelo F. Tognelli8, Agustin Manuel Abba9, Salvador Arias5, Hilda Julieta Arreola-Nava10, Marc A. Baker6, Rolando T. Bárcenas11, Duniel Barrios12, Pierre Braun, Charles A. Butterworth6, Alberto Búrquez5, Fátima Caceres, Miguel Cházaro-Basáñez13, Rafael Corral-Díaz, Mario Del Valle Perea14, Pablo H. Demaio1, Williams A. Duarte De Barros, Rafael Durán, Luis Faúndez Yancas15, Richard S. Felger16, Betty Fitz-Maurice, Walter A. Fitz-Maurice, George D. Gann, Carlos Gómez-Hinostrosa5, Luis R. Gonzales-Torres17, M. Patrick Griffith18, Pablo C. Guerrero19, Pablo C. Guerrero15, Barry E. Hammel20, Kenneth D. Heil21, José Guadalupe Hernández-Oria5, Michael R. Hoffmann22, Michael R. Hoffmann1, Mario Ishiki Ishihara, Roberto Kiesling7, João Larocca, José Luis León de la Luz23, R S Christian Loaiza, Martin Lowry, Marlon C. Machado24, Lucas C. Majure25, Lucas C. Majure26, José Guadalupe Martínez Avalos27, Carlos Martorell5, Joyce Maschinski28, Eduardo Méndez7, Russell A. Mittermeier8, Jafet M. Nassar29, Vivian Negrón-Ortiz30, Vivian Negrón-Ortiz31, Luis Jorge Oakley32, Pablo Ortega-Baes33, Ana Beatriz Pin Ferreira, Donald J. Pinkava25, J. Mark Porter34, Raul Puente-Martinez25, José Eduardo Roque Gamarra35, Patricio Saldivia Pérez, Emiliano Sánchez Martínez, Martin Smith, Simon N. Stuart, José Luis Tapia Muñoz, Teresa Terrazas5, Martin Terry36, Marcelo Trevisson, Teresa Valverde5, Thomas R. Van Devender, Mario Esteban Véliz-Pérez37, Helmut Walter, Sarah A. Wyatt38, Daniela C. Zappi39, J. Alejandro Zavala-Hurtado40, Kevin J. Gaston3 
TL;DR: It is shown that cacti are among the most threatened taxonomic groups assessed to date, with 31% of the 1,478 evaluated species threatened, demonstrating the high anthropogenic pressures on biodiversity in arid lands.
Abstract: A high proportion of plant species is predicted to be threatened with extinction in the near future. However, the threat status of only a small number has been evaluated compared with key animal groups, rendering the magnitude and nature of the risks plants face unclear. Here we report the results of a global species assessment for the largest plant taxon evaluated to date under the International Union for Conservation of Nature (IUCN) Red List Categories and Criteria, the iconic Cactaceae (cacti). We show that cacti are among the most threatened taxonomic groups assessed to date, with 31% of the 1,478 evaluated species threatened, demonstrating the high anthropogenic pressures on biodiversity in arid lands. The distribution of threatened species and the predominant threatening processes and drivers are different to those described for other taxa. The most significant threat processes comprise land conversion to agriculture and aquaculture, collection as biological resources, and residential and commercial development. The dominant drivers of extinction risk are the unscrupulous collection of live plants and seeds for horticultural trade and private ornamental collections, smallholder livestock ranching and smallholder annual agriculture. Our findings demonstrate that global species assessments are readily achievable for major groups of plants with relatively moderate resources, and highlight different conservation priorities and actions to those derived from species assessments of key animal groups.

238 citations


Journal ArticleDOI
TL;DR: It is presented the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability up to a point and an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability is proposed.
Abstract: Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.

208 citations


Journal ArticleDOI
TL;DR: This paper evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found that 32% of all species are threatened with extinction, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae.
Abstract: Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.

193 citations


Journal ArticleDOI
TL;DR: This comment aims to draw the attention of interested parties to the framework and guidelines for implementing the EICAT method, and to present them in their entirety in a location where they are freely accessible to any potential users.
Abstract: Recently, Blackburn et al. (2014) developed a simple, objective and transparent method for classifying alien taxa in terms of the magnitude of their detrimental environmental impacts in recipient areas. Here, we present a comprehensive framework and guidelines for implementing this method, which we term the Environmental Impact Classification for Alien Taxa, or EICAT. We detail criteria for applying the EICAT scheme in a consistent and comparable fashion, prescribe the supporting information that should be supplied along with classifications, and describe the process for implementing the method. This comment aims to draw the attention of interested parties to the framework and guidelines, and to present them in their entirety in a location where they are freely accessible to any potential users.

185 citations


Journal ArticleDOI
TL;DR: It is concluded that PAME data, while designed as a tool for local adaptive management, may also help to provide insights into the impact of PA management interventions from the local-to-global scale.
Abstract: Protected areas (PAs) are at the forefront of conservation efforts, and yet despite considerable progress towards the global target of having 17% of the world's land area within protected areas by 2020, biodiversity continues to decline. The discrepancy between increasing PA coverage and negative biodiversity trends has resulted in renewed efforts to enhance PA effectiveness. The global conservation community has conducted thousands of assessments of protected area management effectiveness (PAME), and interest in the use of these data to help measure the conservation impact of PA management interventions is high. Here, we summarize the status of PAME assessment, review the published evidence for a link between PAME assessment results and the conservation impacts of PAs, and discuss the limitations and future use of PAME data in measuring the impact of PA management interventions on conservation outcomes. We conclude that PAME data, while designed as a tool for local adaptive management, may also help to provide insights into the impact of PA management interventions from the local-to-global scale. However, the subjective and ordinal characteristics of the data present significant limitations for their application in rigorous scientific impact evaluations, a problem that should be recognized and mitigated where possible.

177 citations


Journal ArticleDOI
TL;DR: In this article, the authors present results on how management effectiveness scores change in protected areas receiving conservation investment, using a globally expanded database of protected area management effectiveness, focusing on the "management effectiveness tracking tool" (METT).

Journal ArticleDOI
TL;DR: The number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000, depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest.
Abstract: Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots.

Journal ArticleDOI
TL;DR: An overview of the current state of global eel data and conservation is presented, categorising the knowledge gaps and geographic regions where resources are needed and discussing future recommendations to improve the understanding of anguillids.

Journal ArticleDOI
TL;DR: The IUCN Red List of Ecosystems should be judged by whether it achieves conservation ends and improves natural resource management, whether its limitations are outweighed by its benefits, and whether it performs better than alternative methods.
Abstract: In response to growing demand for ecosystem-level risk assessment in biodiversity conservation, and rapid proliferation of locally tailored protocols, the IUCN recently endorsed new Red List criteria as a global standard for ecosystem risk assessment. Four qualities were sought in the design of the IUCN criteria: generality; precision; realism; and simplicity. Drawing from extensive global consultation, we explore trade-offs among these qualities when dealing with key challenges, including ecosystem classification, measuring ecosystem dynamics, degradation and collapse, and setting decision thresholds to delimit ordinal categories of threat. Experience from countries with national lists of threatened ecosystems demonstrates well-balanced trade-offs in current and potential applications of Red Lists of Ecosystems in legislation, policy, environmental management and education. The IUCN Red List of Ecosystems should be judged by whether it achieves conservation ends and improves natural resource management, whether its limitations are outweighed by its benefits, and whether it performs better than alternative methods. Future development of the Red List of Ecosystems will benefit from the history of the Red List of Threatened Species which was trialed and adjusted iteratively over 50 years from rudimentary beginnings. We anticipate the Red List of Ecosystems will promote policy focus on conservation outcomes in situ across whole landscapes and seascapes.

Journal ArticleDOI
TL;DR: In this paper, the authors advocate a focus on "climate-smart reforestation", defined as reforesting for climate change mitigation and adaptation, while ensuring that the direct and indirect impacts of climate change on reforestation are anticipated and minimized.
Abstract: Tropical reforestation (TR) has been highlighted as an important intervention for climate change mitigation because of its carbon storage potential. TR can also play other frequently overlooked, but significant, roles in helping society and ecosystems adapt to climate variability and change. For example, reforestation can ameliorate climate-associated impacts of altered hydrological cycles in watersheds, protect coastal areas from increased storms, and provide habitat to reduce the probability of species' extinctions under a changing climate. Consequently, reforestation should be managed with both adaptation and mitigation objectives in mind, so as to maximize synergies among these diverse roles, and to avoid trade-offs in which the achievement of one goal is detrimental to another. Management of increased forest cover must also incorporate measures for reducing the direct and indirect impacts of changing climate on reforestation itself. Here we advocate a focus on “climate-smart reforestation,” defined as reforesting for climate change mitigation and adaptation, while ensuring that the direct and indirect impacts of climate change on reforestation are anticipated and minimized.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss wetland status and trends, the loss of wetland ecosystem services and future steps for data collection and assessment, and a call to Contracting Parties to avoid further wetland loss and degradation and to strengthen wetland assessment, monitoring and restoration.
Abstract: Ramsar Resolution XI.17 requested the Convention’s Scientific and Technical Review Panel to report on the state of the world’s wetlands and their services to people. As a contribution to this task, this Briefing Note summarizes and highlights for Contracting Parties and other decision makers key points from select scientific reports and articles published in 2013 and 2014. In particular, the Briefing Note discusses wetland status and trends, the loss of wetland ecosystem services and future steps for data collection and assessment. The negative trends shown by recent studies should serve as a call to Contracting Parties to avoid further wetland loss and degradation and to strengthen wetland assessment, monitoring and restoration.

Journal ArticleDOI
TL;DR: Analysis of three decades of CDV exposure data in dogs and lions of the Serengeti shows that cyclic infection dynamics in lions initially driven by dogs became more frequent and asynchronous, suggesting that the wider dog population and other wildlife species drive CDV dynamics.
Abstract: Morbilliviruses cause many diseases of medical and veterinary importance, and although some (e.g., measles and rinderpest) have been controlled successfully, others, such as canine distemper virus (CDV), are a growing concern. A propensity for host-switching has resulted in CDV emergence in new species, including endangered wildlife, posing challenges for controlling disease in multispecies communities. CDV is typically associated with domestic dogs, but little is known about its maintenance and transmission in species-rich areas or about the potential role of domestic dog vaccination as a means of reducing disease threats to wildlife. We address these questions by analyzing a long-term serological dataset of CDV in lions and domestic dogs from Tanzania’s Serengeti ecosystem. Using a Bayesian state–space model, we show that dynamics of CDV have changed considerably over the past three decades. Initially, peaks of CDV infection in dogs preceded those in lions, suggesting that spill-over from dogs was the main driver of infection in wildlife. However, despite dog-to-lion transmission dominating cross-species transmission models, infection peaks in lions became more frequent and asynchronous from those in dogs, suggesting that other wildlife species may play a role in a potentially complex maintenance community. Widespread mass vaccination of domestic dogs reduced the probability of infection in dogs and the size of outbreaks but did not prevent transmission to or peaks of infection in lions. This study demonstrates the complexity of CDV dynamics in natural ecosystems and the value of long-term, large-scale datasets for investigating transmission patterns and evaluating disease control strategies.

Journal ArticleDOI
TL;DR: The difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated and increased, and sustained, investment could help achieve further improvements.
Abstract: Previous studies show that conservation actions have prevented extinctions, recovered populations, and reduced declining trends in global biodiversity. However, all studies to date have substantially underestimated the difference conservation action makes because they failed to account fully for what would have happened in the absence thereof. We undertook a scenario-based thought experiment to better quantify the effect conservation actions have had on the extinction risk of the world's 235 recognized ungulate species. We did so by comparing species' observed conservation status in 2008 with their estimated status under counterfactual scenarios in which conservation efforts ceased in 1996. We estimated that without conservation at least 148 species would have deteriorated by one International Union for Conservation of Nature (IUCN) Red List category, including 6 species that now would be listed as extinct or extinct in the wild. The overall decline in the conservation status of ungulates would have been nearly 8 times worse than observed. This trend would have been greater still if not for conservation on private lands. While some species have benefited from highly targeted interventions, such as reintroduction, most benefited collaterally from conservation such as habitat protection. We found that the difference conservation action makes to the conservation status of the world's ungulate species is likely to be higher than previously estimated. Increased, and sustained, investment could help achieve further improvements.

Journal ArticleDOI
TL;DR: UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability, and UAVs may have limited applicability for nest detection in closed canopy forest.
Abstract: Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest. Am. J. Primatol. 77:1122–1134, 2015. © 2015 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung, and it is predicted that ivermectin’s effects at the physiological level could influence many members of the Dung pat community.
Abstract: Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

Journal ArticleDOI
TL;DR: The intended application of the Red List of Ecosystems assessment process is reviewed, ‘best-practice’ methods for ecosystem assessments are summarized and approaches to ensure operational rigour of assessments are outlined to ensure robust comparisons among ecosystems and over time.
Abstract: The newly developed IUCN Red List of Ecosystems is part of a growing toolbox for assessing risks to biodiversity, which addresses ecosystems and their functioning. The Red List of Ecosystems standard allows systematic assessment of all freshwater, marine, terrestrial and subterranean ecosystem types in terms of their global risk of collapse. In addition, the Red List of Ecosystems categories and criteria provide a technical base for assessments of ecosystem status at the regional, national, or subnational level. While the Red List of Ecosystems criteria were designed to be widely applicable by scientists and practitioners, guidelines are needed to ensure they are implemented in a standardized manner to reduce epistemic uncertainties and allow robust comparisons among ecosystems and over time. We review the intended application of the Red List of Ecosystems assessment process, summarize ‘best-practice’ methods for ecosystem assessments and outline approaches to ensure operational rigour of assessments. The Red List of Ecosystems will inform priority setting for ecosystem types worldwide, and strengthen capacity to report on progress towards the Aichi Targets of the Convention on Biological Diversity. When integrated with other IUCN knowledge products, such as the World Database of Protected Areas/Protected Planet, Key Biodiversity Areas and the IUCN Red List of Threatened Species, the Red List of Ecosystems will contribute to providing the most complete global measure of the status of biodiversity yet achieved.

Journal ArticleDOI
TL;DR: This review considers recent examples from a wide variety of species and a diverse set of ecosystem services that illustrate this point and support the application of the precautionary principle to decisions affecting the natural world.

Journal ArticleDOI
TL;DR: The first global assessment of trends in pollinators is developed, focusing on pollinating birds and mammals, with a Red List Index showing that, overall, pollinating bird and mammal species are deteriorating in status, with more species moving toward extinction than away from it.
Abstract: Biodiversity is declining, with direct and indirect effects on ecosystem functions and services that are poorly quantified. Here, we develop the first global assessment of trends in pollinators, focusing on pollinating birds and mammals. A Red List Index for these species shows that, overall, pollinating bird and mammal species are deteriorating in status, with more species moving toward extinction than away from it. On average, 2.5 species per year have moved one Red List category toward extinction in recent decades, representing a substantial increase in the extinction risk across this set of species. This may be impacting the delivery of benefits that these species provide to people. We recommend that the index be expanded to include taxonomic groups that contribute more significantly to pollination, such as bees, wasps, and butterflies, thereby giving a more complete picture of the state of pollinating species worldwide.

Journal ArticleDOI
TL;DR: In this article, the authors studied land degradation, land abandonment caused by outmigration, and existing sustainable land management practices in a subwatershed in Kaski District in Nepal.

Journal ArticleDOI
TL;DR: In this article, the authors identify six research areas that are key to informing evaluations of barrier fencing initiatives: economics, edge permeability, reserve design, connectivity, ecosystem services and communities.
Abstract: In dryland ecosystems, mobility is essential for both wildlife and people to access unpredictable and spatially heterogeneous resources, particularly in the face of climate change. Fences can prevent connectivity vital for this mobility. There are recent calls for large-scale barrier fencing interventions to address human–wildlife conflict and illegal resource extraction. Fencing has costs and benefits to people and wildlife. However, the evidence available for facilitating sound decision-making for fencing initiatives is limited, particularly for drylands. We identify six research areas that are key to informing evaluations of fencing initiatives: economics, edge permeability, reserve design, connectivity, ecosystem services and communities. Policy implications. Implementing this research agenda to evaluate fencing interventions in dryland ecosystems will enable better management and policy decisions. The United Nations Conventions on Migratory Species (CMS) and to Combat Desertification (UNCCD) are appropriate international agreements for moving this agenda forward and leading the development of policies and guidelines on fencing in drylands.

Journal ArticleDOI
TL;DR: In this paper, the authors outline an integrative methodological framework for assessing climate change impacts on species that uses both traditional species distribution modelling approaches and biological trait-based assessments. And they show how these models can be used conceptually as inputs to guide conservation monitoring and planning.

Journal ArticleDOI
25 Mar 2015-PLOS ONE
TL;DR: This first global assessment of extinction risk for a major group of freshwater invertebrates, caridean shrimps, finds that two species are extinct with a further 10 possibly extinct, and almost one third of species are either threatened or Near Threatened (NT).
Abstract: We present the first global assessment of extinction risk for a major group of freshwater invertebrates, caridean shrimps. The risk of extinction for all 763 species was assessed using the IUCN Red List criteria that include geographic ranges, habitats, ecology and past and present threats. The Indo-Malayan region holds over half of global species diversity, with a peak in Indo-China and southern China. Shrimps primarily inhabit flowing water; however, a significant subterranean component is present, which is more threatened than the surface fauna. Two species are extinct with a further 10 possibly extinct, and almost one third of species are either threatened or Near Threatened (NT). Threats to freshwater shrimps include agricultural and urban pollution impact over two-thirds of threatened and NT species. Invasive species and climate change have the greatest overall impact of all threats (based on combined timing, scope and severity of threats).

Journal ArticleDOI
TL;DR: In this article, a consensus-based approach was used to operationalize OEABCMs in the Canadian context and developed a decision-screening tool to assess sites for inclusion in Canada's Aichi Target 11 commitment.
Abstract: A renewed global agenda to address biodiversity loss was sanctioned by adoption of the Strategic Plan for Biodiversity 2011-2020 and the 20 Aichi Biodiversity Targets in 2010 by Parties to the Convention on Biological Diversity. However, Aichi Biodiversity Target 11 contained a significant policy and reporting challenge, conceding that both protected areas (PAs) and 'other effective area-based conservation measures' (OEABCMs) could be used to meet national targets of protecting 17 and 10 % of terrestrial and marine areas, respectively. We report on a consensus-based approach used to (1) operationalize OEABCMs in the Canadian context and (2) develop a decision-screening tool to assess sites for inclusion in Canada's Aichi Target 11 commitment. Participants in workshops determined that for OEABCMs to be effective, they must share a core set of traits with PAs, consistent with the intent of Target 11. (1) Criteria for inclusion of OEABCMs in the Target 11 commitment should be consistent with the overall intent of PAs, with the exception that they may be governed by regimes not previously recognized by reporting agencies. (2) These areas should have an expressed objective to conserve nature, be long-term, generate effective nature conservation outcomes, and have governance regimes that ensure effective management. A decision-screening tool was devel- oped that can reduce the risk that areas with limited conservation value are included in national accounting. The findings are relevant to jurisdictions where the debate on what can count is distracting Parties to the Convention from reaching conservation goals.

Journal ArticleDOI
TL;DR: For 50 years, the IUCN Commissions, Secretariat, Members such as BirdLife International and partners such as UNEP-WCMC have been mobilising biodiversity and conservation knowledge products, which are fundamentally important for tracking progress towards 10 of the 20 Aichi Targets, and should similarly become so for seven of the emerging 17 UN Sustainable Development Goals.
Abstract: For 50 years, the IUCN Commissions, Secretariat, Members such as BirdLife International and partners such as UNEP-WCMC have been mobilising biodiversity and conservation knowledge products, which are fundamentally important for tracking progress towards 10 of the 20 Aichi Targets, and should similarly become so for seven of the emerging 17 UN Sustainable Development Goals. Each of these knowledge products comprises standards, governance and quality control, data sets, tools, capacity building and ongoing processes for derivation of biodiversity indicators. The IUCN Red List of Threatened Species, established in 1964, documents extinction risk for more than 76,000 species. Protected Planet, working from the mandate to provide the UN List of Protected Areas, is convened jointly with UNEP and documents ~220,000 protected areas. The Red List of Ecosystems aims to assess the risk of collapse of ecosystems, and is currently being piloted in a number of countries. Key Biodiversity Areas are sites contributing si...

Journal ArticleDOI
TL;DR: Results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype, which could pose significant threats to Madagascar's unique “megadiverse” amphibians.
Abstract: Amphibian chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been a significant driver of amphibian declines. While globally widespread, Bd had not yet been reported from within Madagascar. We document surveys conducted across the country between 2005 and 2014, showing Bd's first record in 2010. Subsequently, Bd was detected in multiple areas, with prevalence reaching up to 100%. Detection of Bd appears to be associated with mid to high elevation sites and to have a seasonal pattern, with greater detectability during the dry season. Lineage-based PCR was performed on a subset of samples. While some did not amplify with any lineage probe, when a positive signal was observed, samples were most similar to the Global Panzootic Lineage (BdGPL). These results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype. Representatives of all native anuran families have tested Bd-positive and exposure trials confirm infection by Bd is possible. Bd's presence could pose significant threats to Madagascar's unique “megadiverse” amphibians.