scispace - formally typeset
Search or ask a question

Showing papers by "Princeton Plasma Physics Laboratory published in 2007"


Journal ArticleDOI
TL;DR: A review of recent advances in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed in this paper.
Abstract: Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.

1,051 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER and compare their predictions with the new experimental results.
Abstract: Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.

943 citations


Journal ArticleDOI
TL;DR: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions.
Abstract: The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.

798 citations


Journal ArticleDOI
TL;DR: In this article, current sheets formed in magnetic reconnection events are found to be unstable to high-wavenumber perturbations, and a chain of plasmoid secondary islands is formed, whose number scales as S3∕8.
Abstract: Current sheets formed in magnetic reconnection events are found to be unstable to high-wavenumber perturbations. The instability is very fast: its maximum growth rate scales as S1∕4vA∕LCS, where LCS is the length of the sheet, vA the Alfven speed, and S the Lundquist number. As a result, a chain of plasmoids (secondary islands) is formed, whose number scales as S3∕8.

787 citations


Journal ArticleDOI
TL;DR: A review of the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes is presented in this paper.
Abstract: This chapter reviews the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes New schemes to create energetic ions simulating the fusion-produced alphas are introduced, accessing experimental conditions of direct relevance for burning plasmas, in terms of the Alfvenic Mach number and of the normalised pressure gradient of the energetic ions, though orbit characteristics and size cannot always match those of ITER Based on the experimental and theoretical knowledge of the effects of the toroidal magnetic field ripple on direct fast ion losses, ferritic inserts in ITER are expected to provide a significant reduction of ripple alpha losses in reversed shear configurations The nonlinear fast ion interaction with kink and tearing modes is qualitatively understood, but quantitative predictions are missing, particularly for the stabilisation of sawteeth by fast particles that can trigger neoclassical tearing modes A large database on the linear stability properties of the modes interacting with energetic ions, such as the Alfven eigenmode has been constructed Comparisons between theoretical predictions and experimental measurements of mode structures and drive/damping rates approach a satisfactory degree of consistency, though systematic measurements and theory comparisons of damping and drive of intermediate and high mode numbers, the most relevant for ITER, still need to be performed The nonlinear behaviour of Alfven eigenmodes close to marginal stability is well characterized theoretically and experimentally, which gives the opportunity to extract some information on the particle phase space distribution from the measured instability spectral features Much less data exists for strongly unstable scenarios, characterised by nonlinear dynamical processes leading to energetic ion redistribution and losses, and identified in nonlinear numerical simulations of Alfven eigenmodes and energetic particle modes Comparisons with theoretical and numerical analyses are needed to assess the potential implications of these regimes on burning plasma scenarios, including in the presence of a large number of modes simultaneously driven unstable by the fast ions

519 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the requirements for high reliability in the systems (diagnostics) that provide the measurements in the ITER environment, which is similar to those made on the present-day large tokamaks while the specification of the measurements will be more stringent.
Abstract: In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.

309 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that approximately 50% of the gravitational potential energy is directly converted into heat at large scales by viscous stress (the remaining energy is lost to grid-scale numerical dissipation of kinetic and magnetic energy).
Abstract: Local (shearing box) simulations of the nonlinear evolution of the magnetorotational instability in a collisionless plasma show that angular momentum transport by pressure anisotropy (p⊥ ≠ p∥, where the directions are defined with respect to the local magnetic field) is comparable to that due to the Maxwell and Reynolds stresses Pressure anisotropy, which is effectively a large-scale viscosity, arises because of adiabatic invariants related to p⊥ and p∥ in a fluctuating magnetic field In a collisionless plasma, the magnitude of the pressure anisotropy, and thus the viscosity, is determined by kinetic instabilities at the cyclotron frequency Our simulations show that ~50% of the gravitational potential energy is directly converted into heat at large scales by the viscous stress (the remaining energy is lost to grid-scale numerical dissipation of kinetic and magnetic energy) We show that electrons receive a significant fraction [~(Te/Ti)1/2] of this dissipated energy Employing this heating by an anisotropic viscous stress in one-dimensional models of radiatively inefficient accretion flows, we find that the radiative efficiency of the flow is greater than 05% for 10-4Edd Thus, a low accretion rate, rather than just a low radiative efficiency, is necessary to explain the low luminosity of many accreting black holes For Sgr A* in the Galactic center, our predicted radiative efficiencies imply an accretion rate of ≈3 × 10-8 M☉ yr-1 and an electron temperature of ≈3 × 1010 K at ≈10 Schwarzschild radii; the latter is consistent with the brightness temperature inferred from VLBI observations

227 citations


Journal ArticleDOI
TL;DR: It is shown that standard algorithms for anisotropic diffusion based on centered differencing do not preserve monotonicity, and algorithms based on slope limiters, analogous to those used in second order schemes for hyperbolic equations, are proposed to fix this.

181 citations


Journal ArticleDOI
TL;DR: In this article, a review of recent work in scrape-off layer (SOL) and divertor physics is presented, where new and existing data from a variety of experiments have been used to make cross-experiment comparisons with implications for further research and ITER.
Abstract: Recent research in scrape-off layer (SOL) and divertor physics is reviewed; new and existing data from a variety of experiments have been used to make cross-experiment comparisons with implications for further research and ITER. Studies of the region near the separatrix have addressed the relationship of profiles to turbulence as well as the scaling of the parallel power flow. Enhanced low-field side radial transport is implicated as driving parallel flows to the inboard side. The medium-n nature of edge localized modes (ELMs) has been elucidated and new measurements have determined that they carry ~10?20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. The predicted divertor power loads for ITER disruptions are reduced while those to main chamber plasma facing components (PFCs) increase. Disruption mitigation through massive gas puffing is successful at reducing PFC heat loads. New estimates of ITER tritium retention have shown tile sides to play a significant role; tritium cleanup may be necessary every few days to weeks. ITER's use of mixed materials gives rise to a reduction of surface melting temperatures and chemical sputtering. Advances in modelling of the ITER divertor and flows have enhanced the capability to match experimental data and predict ITER performance.

178 citations


Journal ArticleDOI
TL;DR: DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and had an increased interaction with the magnetic field of the unperturbed equilibrium.
Abstract: The sensitivity of tokamak plasmas to very small deviations from the axisymmetry of the magnetic field |δ→(over)Β/→(over)Β|≈ 10–4 is well known. What was not understood until very recently is the importance of the perturbation to the plasma equilibrium in assessing the effects of externally produced asymmetries in the magnetic field, even far from a stability limit. DIII-D and NSTX experiments find that when the deleterious effects of asymmetries are mitigated, the external asymmetric field was often made stronger and with an increased interaction with the magnetic field of the unperturbed equilibrium fields. This paper explains these counter intuitive results. The explanation using ideal perturbed equilibria has important implications for the control of field errors in all toroidal plasmas.

131 citations


Journal ArticleDOI
TL;DR: The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping, and will sustain the plasma pressure above the ideal MHD no-wall stability limit.
Abstract: Recent DIII-D experiments with reduced neutral beam torque and minimum nonaxisymmetric perturbations of the magnetic field show a significant reduction of the toroidal plasma rotation required for the stabilization of the resistive-wall mode (RWM) below the threshold values observed in experiments that apply nonaxisymmetric magnetic fields to slow the plasma rotation. A toroidal rotation frequency of less than 10 krad/s at the q=2 surface (measured with charge exchange recombination spectroscopy using C VI) corresponding to 0.3% of the inverse of the toroidal Alfven time is sufficient to sustain the plasma pressure above the ideal MHD no-wall stability limit. The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping.

Journal ArticleDOI
TL;DR: In this paper, the NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER, and a strong increase in confinement with decreasing collisionality and a weak degradation with beta.
Abstract: The NSTX operates at low aspect ratio (R/a ~ 1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. The NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong BT dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase in confinement with decreasing collisionality and a weak degradation with beta. The increase in confinement with BT is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes in across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of electron temperature gradient (ETG) modes at the lowest BT. Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L–H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ion temperature gradient/TEM regime up to the ETG regime.

Journal ArticleDOI
TL;DR: In this article, a global MHD eigenmode solution arising in gaps in the low frequency Alfven -acoustic continuum below the geodesic acoustic mode (GAM) frequency has been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks.

Journal ArticleDOI
TL;DR: In this paper, integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER).
Abstract: Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6–8.3, βN values of 2.1–2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5–7, βN values of 2.3–3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.

Journal ArticleDOI
TL;DR: In this article, the physics and technology of wave-particle-interaction experiments in the ion cyclotron range of frequencies (ICRF) and the lower hybrid (LH) range of frequency (LHRF) were reviewed.
Abstract: This paper reviews the physics and technology of wave-particle-interaction experiments in the ion cyclotron range of frequencies (ICRF) and the lower hybrid (LH) range of frequencies (LHRF) on the ...

Journal ArticleDOI
TL;DR: In this paper, the authors proposed that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the resistive wall mode.
Abstract: Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated qmin for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios.

Journal ArticleDOI
TL;DR: In this paper, momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta βN, by varying the mix of co (parallel to the plasma current) and counter neutral beams.
Abstract: Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta βN, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This 'intrinsic' rotation can be modeled as being due to an offset in the applied torque (i.e. an 'anomalous torque'). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities.Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated qmin show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E × B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.

Journal ArticleDOI
TL;DR: This Letter reports on experiments on the TEXTOR tokamak investigating the effect of heating, which is usually neglected, and enables a detailed study of the suppression process and a comparison with theory.
Abstract: The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.

Journal ArticleDOI
TL;DR: Comprehensive analysis of the largest first-principles simulations to date shows that stochastic wave-particle decorrelation is the dominant mechanism responsible for electron heat transport driven by electron temperature gradient turbulence with extended radial streamers.
Abstract: Comprehensive analysis of the largest first-principles simulations to date shows that stochastic wave-particle decorrelation is the dominant mechanism responsible for electron heat transport driven by electron temperature gradient turbulence with extended radial streamers. The transport is proportional to the local fluctuation intensity, and phase-space island overlap leads to a diffusive process with a time scale comparable to the wave-particle decorrelation time, determined by the fluctuation spectral width. This kinetic time scale is much shorter than the fluid time scale of eddy mixing.

Journal ArticleDOI
TL;DR: Divertors allow reduction of the electron-neutral collision frequency to values where the RMFo coupling indicates full penetration of theRMFo to the major axis.
Abstract: Odd-parity rotating magnetic fields (RMFo) applied to mirror-configuration plasmas have produced average electron energies exceeding 200 eV at line-averaged electron densities of approximately 10(12) cm-3. These plasmas, sustained for over 10(3)tauAlfven, have low Coulomb collisionality, vc* triple bond L/lambdaC approximately 10(-3), where lambdaC is the Coulomb scattering mean free path and L is the plasma's characteristic half length. Divertors allow reduction of the electron-neutral collision frequency to values where the RMFo coupling indicates full penetration of the RMFo to the major axis.

Journal ArticleDOI
TL;DR: In this article, the authors assess how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy, and assess the feasibility of using them to accelerate ion-beam-driven warm dense matter.
Abstract: During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

Journal ArticleDOI
Roger Raman1, Joon-Wook Ahn2, Jean Paul Allain3, R. Andre4  +171 moreInstitutions (31)
TL;DR: In this article, the influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shears has been included in gyro-kinetic codes, improving comparisons with the experimental data.
Abstract: Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%.

Journal ArticleDOI
TL;DR: In this paper, the authors used dedicated $H$mode parameter scans in the high-power National Spherical Torus Experiment to establish the confinement scaling and underlying transport trends at low aspect ratio.
Abstract: Dedicated $H$-mode parameter scans in the high-power National Spherical Torus Experiment have been used to establish the confinement scaling and underlying transport trends at low aspect ratio ($R/a\ensuremath{\simeq}13$) These scans indicate a strong dependence of the global and thermal energy confinement times on the toroidal field, ${B}_{T}^{09}$, while their dependence on plasma current is weaker, ${I}_{p}^{04}$ Local transport analysis indicates that the electrons control the ${B}_{T}$ scaling, whereas the ions control the ${I}_{p}$ scaling, with ${\ensuremath{\chi}}_{i}$ outside $r/a=05$ at the neoclassical level

Journal ArticleDOI
TL;DR: In this paper, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code was developed and applied.
Abstract: The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five-dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth–Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the plateau regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL.

Journal ArticleDOI
TL;DR: In this article, Munsat et al. used liquid lithium as a large area plasma-facing component (PFC) in a spherical tokamak and achieved the largest enhancement in confinement ever seen in Ohmic plasmas.
Abstract: The Current Drive Experiment-Upgrade [T. Munsat, P. C. Efthimion, B. Jones, R. Kaita, R. Majeski, D. Stutman, and G. Taylor, Phys. Plasmas 9, 480 (2002)] spherical tokamak research program has focused on lithium as a large area plasma-facing component (PFC). The energy confinement times showed a sixfold or more improvement over discharges without lithium PFCs. This was an increase of up to a factor of 3 over ITER98P(y,1) scaling [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)], and reflects the largest enhancement in confinement ever seen in Ohmic plasmas. Recycling coefficients of 0.3 or below were achieved, and they are the lowest to date in magnetically confined plasmas. The effectiveness of liquid lithium in redistributing heat loads at extremely high power densities was demonstrated with an electron beam, which was used to generate lithium coatings. When directed to a lithium reservoir, evaporation occurred only after the entire volume of lithium was raised to the evaporation temperature. T...

Journal ArticleDOI
TL;DR: The updates to and analysis of the International Tokamak Physics Activity (ITPA) Global H-Mode Confinement Database version 3 (DB3) over the period 1994–2004 are described.
Abstract: This paper describes the updates to and analysis of the International Tokamak Physics Activity (ITPA) Global H-Mode Confinement Database version 3 (DB3) over the period 1994–2004. Global data, for the energy confinement time and its controlling parameters, have now been collected from 18 machines of different sizes and shapes: ASDEX, ASDEX Upgrade, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M, JT-60U, MAST, NSTX, PBX-M, PDX, START, T-10, TCV, TdeV, TFTR and TUMAN-3M. The database now contains 10382 data entries from 3762 plasma discharges, including data from deuterium–tritium experiments, low-aspect ratio plasmas, dimensionless parameter experiments and plasmas. DB3 also contains an increased amount of data from a range of diverted machines and further data at high triangularity, high density and high current. A wide range of physics studies has been performed on DB3 with particular progress made in the separation of core and edge behaviour, dimensionless parameter analyses and the comparison of the database with one-dimensional transport codes. The errors in the physics variables of the database have also been studied and this has led to the use of errors in variables fits. A key aim of the database has always been to provide a basis for estimating the energy confinement properties of next step machines such as ITER, and so the impact of the database and its analysis on such machines is also discussed.

Journal ArticleDOI
TL;DR: In this article, it was shown that in most cases the ITB phase is terminated clearly before the first ELM burst, thereby ruling out the ELMs as the main trigger of ITB collapse.
Abstract: Internal transport barriers (ITBs) in the ion channel in the tokamak ASDEX Upgrade allow for high energy confinement but collapse after only several energy confinement times. In this paper we show that in most cases the ITB phase is terminated clearly before the first ELM burst, thereby ruling out the ELMs as the main trigger of the ITB collapse. For the first time, the ITB formation and sustainment are found to be associated with a mechanism of transport suppression based on thermal ions dilution by the injected fast ions. Interestingly, such ITBs do not require reversed magnetic shear. The linear growth rate of the ion temperature gradient driven mode is computed as a function of the fast ion fraction with gyrokinetic stability analysis. Monte Carlo simulations predict the fast ion population to be above the gyrokinetic critical fraction in a region consistent with the experimental ITB width. The density threshold documented for the onset of ASDEX Upgrade ion ITBs is explained. The role of Ti/Te and of the plasma sheared rotation for ITB sustainment are analysed. The stabilization mechanism presented here is consistent with the observed ITB lifetime of the order of the beam slowing down time. A possible runaway mechanism leading to ITB collapse is described. Finally, the relevance of this particular ITB scheme for ITER is discussed.

Journal ArticleDOI
TL;DR: In this article, 3D trajectories of the dust particles were derived from measurements of dust trajectories taken simultaneously from two observations points with two fast cameras, and the trajectories were shown to exhibit a large variation in both speed (10-200m/s) and direction.

Journal ArticleDOI
TL;DR: The role of theory and simulation in fusion sciences is discussed in this paper, where the authors present a review of the state of the art in fusion simulation and modeling, and present a set of collaborative tools for fusion simulation.
Abstract: I. Introduction (Z. Lin, G. Y. Fu, J. Q. Dong) II. Role of theory and simulation in fusion sciences 1. The Impact of theory and simulation on tokomak experiments (H. R. Wilson, T.S. Hahm and F. Zonca) 2. Tokomak Transport Physics for the Era of ITER: Issues for Simulations (P.H. Diamond and T.S. Hahm) III. Status of fusion simulation and modeling 1. Nonlinear Governing Equations for Plasma Simulations (T. S. Hahm) 2. Equilibrium and stability (L.L. Lao, J. Manickam) 3. Transport modeling (R.E. Waltz) 4. Nonlinear MHD (G.Y. Fu) 5. Turbulence (Z. Lin and R.E. Waltz) 6. RF heating and current drive (D.A. Batchelor) 7. Edge physics Simulations (X.Q. Xu and C.S. Chang) 8. Energetic particle physics (F. Zonca, G.Y. Fu and S.J. Wang) 9. Time-dependent Integrated Modeling (R.V. Budny) 10. Validation and verification (J. Manickam) IV. Major initiatives on fusion simulation 1. US Scientific Discovery through Advanced Computing (SciDAC) Program & Fusion Energy Science (W. Tang) 2. EU Integrated Tokamak Modelling (ITM) Task Force (A. Becoulet) 3. Fusion Simulations Activities in Japan (A. Fukuyama, N. Nakajima, Y. Kishimoto, T. Ozeki, and M. Yagi) V. Cross-disciplinary research in fusion simulation 1. Applied mathematics: Models, Discretizations, and Solvers (D.E. Keyes) 2. Computational Science (K. Li) 3. Scientific Data and Workflow Management (S. Klasky, M. Beck, B. Ludaescher, N. Podhorszki, M.A. Vouk) 4. Collaborative tools (J. Manickam)

Journal ArticleDOI
TL;DR: In this article, the authors present simulations and analysis of the heating of warm dense matter foils by ion beams with ion energy less than one MeV per nucleon to target temperatures of order one eV.
Abstract: We present simulations and analysis of the heating of warm dense matter foils by ion beams with ion energy less than one MeV per nucleon to target temperatures of order one eV. Simulations were carried out using the multi-physics radiation hydrodynamics code HYDRA and comparisons are made with analysis and the code DPC. We simulate possible targets for a proposed experiment at LBNL (the so-called Neutralized Drift Compression Experiment, NDCXII) for studies of warm dense matter. We compare the dynamics of ideally heated targets, under several assumed equation of states, exploring dynamics in the two-phase (fluid-vapor) regime.