scispace - formally typeset
Search or ask a question
Institution

University of Lorraine

EducationNancy, France
About: University of Lorraine is a education organization based out in Nancy, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 11942 authors who have published 25010 publications receiving 425227 citations. The organization is also known as: Lorraine University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, in situ-produced cosmogenic 10 Be concentrations were measured in detritic quartz in order to determine basin-scale denudation rates for the central part of the Himalayan range.

145 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess available data on the structure and function of the world's forests, explore the main differences in the carbon exchange between managed and unmanaged stands, and explore potential physiological mechanisms behind both observed and expected changes.

145 citations

Journal Article
TL;DR: In this article, a survey of techniques in design and analysis of algo-rithms that can be used to solve NP hard problems faster than ex- haustive search algorithms (but still in exponential time).
Abstract: This survey concerns techniques in design and analysis of algo- rithms that can be used to solve NP hard problems faster than ex- haustive search algorithms (but still in exponential time). We discuss several of such techniques: Measure & Conquer, Exponential Lower Bounds, Bounded Tree-width, and Memorization. We also consider some extensions of the mentioned techniques to parameterized algo- rithms.

145 citations

Journal ArticleDOI
TL;DR: The identification of the key players of VSMC changes operating in large and small-sized arteries in response to increased mechanical load may be useful to better elucidate the causes and consequences of vascular aging and associated progression of hypertension, arteriosclerosis, and atherosclerosis.
Abstract: Arterial aging engages a plethora of key signalling pathways that act in concert to induce vascular smooth muscle cell (VSMC) phenotypic changes leading to vascular degeneration and extracellular matrix degradation responsible for alterations of the mechanical properties of the vascular wall. This review highlights proof-of-concept examples of components of the extracellular matrix, VSMC receptors which connect extracellular and intracellular structures, and signalling pathways regulating changes in mechanotransduction and vascular homeostasis in aging. Furthermore, it provides a new framework for understanding how VSMC stiffness and adhesion to extracellular matrix contribute to arterial stiffness and how interactions with endothelial cells, platelets, and immune cells can regulate vascular aging. The identification of the key players of VSMC changes operating in large and small-sized arteries in response to increased mechanical load may be useful to better elucidate the causes and consequences of vascular aging and associated progression of hypertension, arteriosclerosis, and atherosclerosis.

145 citations


Authors

Showing all 12161 results

NameH-indexPapersCitations
Jonathan I. Epstein138112180975
Peter Tugwell129948125480
David Brown105125746827
Faiez Zannad10383990737
Sabu Thomas102155451366
Francis Martin9873343991
João F. Mano9782236401
Jonathan A. Epstein9429927492
Muhammad Imran94305351728
Laurent Peyrin-Biroulet9090134120
Athanase Benetos8339131718
Michel Marre8244439052
Bruno Rossion8033721902
Lyn March7836762536
Alan J. M. Baker7623426080
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

National Research Council
76K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022478
20213,153
20202,987
20192,799
20182,593