scispace - formally typeset
Search or ask a question
Institution

University of Lorraine

EducationNancy, France
About: University of Lorraine is a education organization based out in Nancy, France. It is known for research contribution in the topics: Population & Context (language use). The organization has 11942 authors who have published 25010 publications receiving 425227 citations. The organization is also known as: Lorraine University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the crystal structure of modulated martensite in Mn-rich off-stoichiometric Ni2Mn1.44In0.56 alloy was determined with high-resolution powder neutron diffraction and synchrotron X-ray diffraction in the frame of (3 + 1)-dimensional superspace theory.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new insights into the mechanical properties and workability of cemented paste backfills (CPBs) containing various superplasticizers and evaluate the effects of these admixtures on cement hydration.

87 citations

Journal ArticleDOI
TL;DR: It is indicated that mycorrhizal plants need to interact with protozoa to fully exploit N resources from OM, resulting in increased C allocation to roots and into the rhizosphere, thereby increasing plant nutrient exploitation.
Abstract: Dead organic matter (OM) is a major source of nitrogen (N) for plants. The majority of plants support N uptake by symbiosis with arbuscular mycorrhizal (AM) fungi. Mineralization of N is regulated by microfauna, in particular, protozoa grazing on bacteria. We hypothesized that AM fungi and protozoa interactively facilitate plant N nutrition from OM. In soil systems consisting of an OM patch and a root compartment, plant N uptake and consequences for plant carbon (C) allocation were investigated using stable isotopes. Protozoa mobilized N by consuming bacteria, and the mobilized N was translocated via AM fungi to the host plant. The presence of protozoa in both the OM and root compartment stimulated photosynthesis and the translocation of C from the host plant via AM fungi into the OM patch. This stimulated microbial activity in the OM patch, plant N uptake from OM and doubled plant growth. The results indicate that protozoa increase plant growth by both mobilization of N from OM and by protozoa-root interactions, resulting in increased C allocation to roots and into the rhizosphere, thereby increasing plant nutrient exploitation. Hence, mycorrhizal plants need to interact with protozoa to fully exploit N resources from OM.

87 citations

Journal ArticleDOI
TL;DR: This review article focuses on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery, describing targeted and nontargeted ICG nanoparticle models and ICGcomplexation with targeting agents.
Abstract: Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.

87 citations

Journal ArticleDOI
TL;DR: This review highlights the knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products and reveals that secondary metabolite gene clusters of phylogenetically closely related StrePTomyces are mainly species-specific.
Abstract: Since the discovery of the streptomycin produced by Streptomyces griseus in the middle of the last century, members of this bacterial genus have been largely exploited for the production of secondary metabolites with wide uses in medicine and in agriculture. They have even been recognized as one of the most prolific producers of natural products among microorganisms. With the onset of the genomic era, it became evident that these microorganisms still represent a major source for the discovery of novel secondary metabolites. This was highlighted with the complete genome sequencing of Streptomyces coelicolor A3(2) which revealed an unexpected potential of this organism to synthesize natural products undetected until then by classical screening methods. Since then, analysis of sequenced genomes from numerous Streptomyces species has shown that a single species can carry more than 30 secondary metabolite gene clusters, reinforcing the idea that the biosynthetic potential of this bacterial genus is far from being fully exploited. This review highlights our knowledge on the potential of Streptomyces ambofaciens ATCC 23877 to synthesize natural products. This industrial strain was known for decades to only produce the drug spiramycin and another antibacterial compound, congocidine. Mining of its genome allowed the identification of 23 clusters potentially involved in the production of other secondary metabolites. Studies of some of these clusters resulted in the characterization of novel compounds and of previously known compounds but never characterized in this Streptomyces species. In addition, genome mining revealed that secondary metabolite gene clusters of phylogenetically closely related Streptomyces are mainly species-specific.

87 citations


Authors

Showing all 12161 results

NameH-indexPapersCitations
Jonathan I. Epstein138112180975
Peter Tugwell129948125480
David Brown105125746827
Faiez Zannad10383990737
Sabu Thomas102155451366
Francis Martin9873343991
João F. Mano9782236401
Jonathan A. Epstein9429927492
Muhammad Imran94305351728
Laurent Peyrin-Biroulet9090134120
Athanase Benetos8339131718
Michel Marre8244439052
Bruno Rossion8033721902
Lyn March7836762536
Alan J. M. Baker7623426080
Network Information
Related Institutions (5)
University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

National Research Council
76K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202375
2022478
20213,153
20202,987
20192,799
20182,593