scispace - formally typeset
Search or ask a question
Institution

University of Missouri

EducationColumbia, Missouri, United States
About: University of Missouri is a education organization based out in Columbia, Missouri, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 41427 authors who have published 83598 publications receiving 2911437 citations. The organization is also known as: Mizzou & Missouri-Columbia.


Papers
More filters
Journal ArticleDOI
TL;DR: The results generally support the superiority of the PBL approach over more traditional methods in problem-based learning.
Abstract: The purpose of this review is to synthesize all available evaluative research from 1970 through 1992 that compares problem-based learning (PBL) with more traditional methods of medical education. Five separate meta-analyses were performed on 35 studies representing 19 institutions. For 22 of the studies (representing 14 institutions), both effect-size and supplementary vote-count analyses could be performed; otherwise, only supplementary analyses were performed. PBL was found to be significantly superior with respect to students' program evaluations (i.e., students' attitudes and opinions about their programs)--dw (standardized differences between means, weighted by sample size) = +.55, CI.95 = +.40 to +.70 - and measures of students' clinical performance (dw = +.28, CI.95 = +.16 to +.40). PBL and traditional methods did not differ on miscellaneous tests of factual knowledge (dw = -.09, CI.95 = +.06 to -.24) and tests of clinical knowledge (dw = +.08, CI.95 = -.05 to +.21). Traditional students performed significantly better than their PBL counterparts on the National Board of Medical Examiners Part I examination--NBME I (dw = -.18, CI.95 = -.10 to -.26). However, the NBME I data displayed significant overall heterogeneity (Qt = 192.23, p < .001) and significant differences among programs (Qb = 59.09, p < .001), which casts doubt on the generality of the findings across programs. The comparative value of PBL is also supported by data on outcomes that have been studied less frequently, i.e., faculty attitudes, student mood, class attendance, academic process variables, and measures of humanism. In conclusion, the results generally support the superiority of the PBL approach over more traditional methods. Acad. Med. 68 (1993):550-563.

1,491 citations

Journal ArticleDOI
TL;DR: New guidelines for laboratory testing for patients with diabetes mellitus provide specific recommendations that are based on published data or derived from expert consensus, and several analytes have minimal clinical value at present and are not recommended.
Abstract: Background: Multiple laboratory tests are used in the diagnosis and management of patients with diabetes mellitus The quality of the scientific evidence supporting the use of these assays varies substantially Approach: An expert committee drafted evidence-based recommendations for the use of laboratory analysis in patients with diabetes An external panel of experts reviewed a draft of the guidelines, which were modified in response to the reviewers’ suggestions A revised draft was posted on the Internet and was presented at the AACC Annual Meeting in July, 2000 The recommendations were modified again in response to oral and written comments The guidelines were reviewed by the Professional Practice Committee of the American Diabetes Association Content: Measurement of plasma glucose remains the sole diagnostic criterion for diabetes Monitoring of glycemic control is performed by the patients, who measure their own plasma or blood glucose with meters, and by laboratory analysis of glycated hemoglobin The potential roles of noninvasive glucose monitoring, genetic testing, autoantibodies, microalbumin, proinsulin, C-peptide, and other analytes are addressed Summary: The guidelines provide specific recommendations based on published data or derived from expert consensus Several analytes are of minimal clinical value at the present time, and measurement of them is not recommended

1,481 citations

Journal ArticleDOI
TL;DR: In this paper, an open definition of urban systems that accounts for the exchanges of material and influence between cities and surrounding landscapes is presented, which sets the stage for comprehensive understanding of urban ecosystems.
Abstract: Ecological studies of terrestrial urban systems have been approached along several kinds of contrasts: ecology in as opposed to ecology of cities; biogeochemical compared to organismal perspectives, land use planning versus biological, and disciplinary versus interdisciplinary. In order to point out how urban ecological studies are poised for significant integration, we review key aspects of these disparate literatures. We emphasize an open definition of urban systems that accounts for the exchanges of material and influence between cities and surrounding landscapes. Research on ecology in urban systems highlights the nature of the physical environment, including urban climate, hydrology, and soils. Biotic research has studied flora, fauna, and vegetation, including trophic effects of wildlife and pets. Unexpected interactions among soil chemistry, leaf litter quality, and exotic invertebrates exemplify the novel kinds of interactions that can occur in urban systems. Vegetation and faunal responses suggest that the configuration of spatial heterogeneity is especially important in urban systems. This insight parallels the concern in the literature on the ecological dimensions of land use planning. The contrasting approach of ecology of cities has used a strategy of biogeochemical budgets, ecological footprints, and summaries of citywide species richness. Contemporary ecosystem approaches have begun to integrate organismal, nutrient, and energetic approaches, and to show the need for understanding the social dimensions of urban ecology. Social structure and the social allocation of natural and institutional resources are subjects that are well understood within social sciences, and that can be readily accommodated in ecosystem models of metropolitan areas. Likewise, the sophisticated understanding of spatial dimensions of social differentiation has parallels with concepts and data on patch dynamics in ecology and sets the stage for comprehensive understanding of urban ecosystems. The linkages are captured in the human ecosystem framework.

1,479 citations

Journal ArticleDOI
Rupert R A Bourne1, Seth Flaxman2, Tasanee Braithwaite1, Maria V Cicinelli, Aditi Das, Jost B. Jonas3, Jill E Keeffe4, John H Kempen5, Janet L Leasher6, Hans Limburg, Kovin Naidoo7, Kovin Naidoo8, Konrad Pesudovs9, Serge Resnikoff8, Serge Resnikoff10, Alexander J Silvester11, Gretchen A Stevens12, Nina Tahhan8, Nina Tahhan10, Tien Yin Wong13, Hugh R. Taylor14, Rupert R A Bourne1, Peter Ackland, Aries Arditi, Yaniv Barkana, Banu Bozkurt15, Alain M. Bron16, Donald L. Budenz17, Feng Cai, Robert J Casson18, Usha Chakravarthy19, Jaewan Choi, Maria Vittoria Cicinelli, Nathan Congdon19, Reza Dana20, Rakhi Dandona21, Lalit Dandona22, Iva Dekaris, Monte A. Del Monte23, Jenny deva24, Laura Dreer25, Leon B. Ellwein26, Marcela Frazier25, Kevin D. Frick27, David S. Friedman27, João M. Furtado28, H. Gao29, Gus Gazzard30, Ronnie George, Stephen Gichuhi31, Victor H. Gonzalez, Billy R. Hammond32, Mary Elizabeth Hartnett33, Minguang He14, James F. Hejtmancik26, Flavio E. Hirai34, John J Huang35, April D. Ingram36, Jonathan C. Javitt27, Jost B. Jonas3, Charlotte E. Joslin, John H. Kempen20, John H. Kempen37, Moncef Khairallah, Rohit C Khanna4, Judy E. Kim38, George N. Lambrou39, Van C. Lansingh, Paolo Lanzetta40, Jennifer I. Lim41, Kaweh Mansouri, Anu A. Mathew42, Alan R. Morse, Beatriz Munoz27, David C. Musch23, Vinay Nangia, Maria Palaiou20, Maurizio Battaglia Parodi, Fernando Yaacov Pena42, Tunde Peto19, Harry A. Quigley27, Murugesan Raju43, Pradeep Y. Ramulu27, Alan L. Robin27, Luca Rossetti44, Jinan B. Saaddine45, Mya Sandar46, Janet B. Serle47, Tueng T. Shen22, Rajesh K. Shetty48, Pamela C. Sieving26, Juan Carlos Silva49, Rita S. Sitorus50, Dwight Stambolian37, Gretchen Stevens12, Hugh Taylor14, Jaime Tejedor, James M. Tielsch27, Miltiadis K. Tsilimbaris51, Jan C. van Meurs52, Rohit Varma53, Gianni Virgili54, Jimmy Volmink55, Ya Xing Wang, Ningli Wang56, Sheila K. West27, Peter Wiedemann57, Tien Wong13, Richard Wormald58, Yingfeng Zheng46 
Anglia Ruskin University1, University of Oxford2, Heidelberg University3, L V Prasad Eye Institute4, Massachusetts Eye and Ear Infirmary5, Nova Southeastern University6, University of KwaZulu-Natal7, Brien Holden Vision Institute8, Flinders University9, University of New South Wales10, Royal Liverpool University Hospital11, World Health Organization12, National University of Singapore13, University of Melbourne14, Selçuk University15, University of Burgundy16, University of Miami17, University of Adelaide18, Queen's University Belfast19, Harvard University20, The George Institute for Global Health21, University of Washington22, University of Michigan23, Universiti Tunku Abdul Rahman24, University of Alabama25, National Institutes of Health26, Johns Hopkins University27, University of São Paulo28, Henry Ford Health System29, University College London30, University of Nairobi31, University of Georgia32, University of Utah33, Federal University of São Paulo34, Yale University35, Alberta Children's Hospital36, University of Pennsylvania37, Medical College of Wisconsin38, Novartis39, University of Udine40, University of Illinois at Urbana–Champaign41, Royal Children's Hospital42, University of Missouri43, University of Milan44, Centers for Disease Control and Prevention45, Singapore National Eye Center46, Icahn School of Medicine at Mount Sinai47, Mayo Clinic48, Pan American Health Organization49, University of Indonesia50, University of Crete51, Erasmus University Rotterdam52, University of Southern California53, University of Florence54, Stellenbosch University55, Capital Medical University56, Leipzig University57, Moorfields Eye Hospital58
TL;DR: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world's population is causing a substantial increase in number of people affected, highlighting the need to scale up vision impairment alleviation efforts at all levels.

1,473 citations

Proceedings ArticleDOI
01 Jun 2003
TL;DR: An algorithm that uses connectivity information who is within communications range of whom to derive the locations of the nodes in the network is presented, based on multidimensional scaling, a data analysis technique that takes O(n3) time for a network of n nodes.
Abstract: It is often useful to know the geographic positions of nodes in a communications network, but adding GPS receivers or other sophisticated sensors to every node can be expensive. We present an algorithm that uses connectivity information who is within communications range of whom to derive the locations of the nodes in the network. The method can take advantage of additional information, such as estimated distances between neighbors or known positions for certain anchor nodes, if it is available. The algorithm is based on multidimensional scaling, a data analysis technique that takes O(n3) time for a network of n nodes. Through simulation studies, we demonstrate that the algorithm is more robust to measurement error than previous proposals, especially when nodes are positioned relatively uniformly throughout the plane. Furthermore, it can achieve comparable results using many fewer anchor nodes than previous methods, and even yields relative coordinates when no anchor nodes are available.

1,463 citations


Authors

Showing all 41750 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Meir J. Stampfer2771414283776
Russel J. Reiter1691646121010
Chad A. Mirkin1641078134254
Robert Stone1601756167901
Howard I. Scher151944101737
Rajesh Kumar1494439140830
Joseph T. Hupp14173182647
Lihong V. Wang136111872482
Stephen R. Carpenter131464109624
Jan A. Staessen130113790057
Robert S. Brown130124365822
Mauro Giavalisco12841269967
Kenneth J. Pienta12767164531
Matthew W. Gillman12652955835
Network Information
Related Institutions (5)
University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

Ohio State University
222.7K papers, 8.3M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023120
2022532
20213,698
20203,683
20193,339
20183,182