scispace - formally typeset
Search or ask a question

Showing papers by "Vertex Pharmaceuticals published in 2016"


Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel1, Eric Vallabh Minikel2, Kaitlin E. Samocha, Eric Banks1, Timothy Fennell1, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria3, Anne H. O’Donnell-Luria2, James S. Ware, Andrew J. Hill4, Andrew J. Hill1, Andrew J. Hill2, Beryl B. Cummings2, Beryl B. Cummings1, Taru Tukiainen2, Taru Tukiainen1, Daniel P. Birnbaum1, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada2, Karol Estrada1, Fengmei Zhao2, Fengmei Zhao1, James Zou1, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo1, Ron Do, Jason Flannick1, Jason Flannick2, Menachem Fromer, Laura D. Gauthier1, Jackie Goldstein1, Jackie Goldstein2, Namrata Gupta1, Daniel P. Howrigan2, Daniel P. Howrigan1, Adam Kiezun1, Mitja I. Kurki2, Mitja I. Kurki1, Ami Levy Moonshine1, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso1, Gina M. Peloso2, Ryan Poplin1, Manuel A. Rivas1, Valentin Ruano-Rubio1, Samuel A. Rose1, Douglas M. Ruderfer8, Khalid Shakir1, Peter D. Stenson6, Christine Stevens1, Brett Thomas2, Brett Thomas1, Grace Tiao1, María Teresa Tusié-Luna, Ben Weisburd1, Hong-Hee Won9, Dongmei Yu, David Altshuler1, David Altshuler10, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly1, Roberto Elosua, Jose C. Florez1, Jose C. Florez2, Stacey Gabriel1, Gad Getz1, Gad Getz2, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll1, Steven A. McCarroll2, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale2, Benjamin M. Neale1, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan21, Patrick F. Sullivan14, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins16, Hugh Watkins17, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur1, Daniel G. MacArthur2 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations


Journal ArticleDOI
TL;DR: The research leading to breakthroughs in PPI inhibition is described and the existence of groups of structurally related PPIs within the PPI target class is highlighted to illustrate the research strategies that have proved most useful.
Abstract: The biological rationale for targeting protein–protein interactions as a therapeutic strategy is strong, but identifying viable small-molecule drugs to achieve this has proved highly challenging. This article uses examples of successful discovery efforts to illustrate the research strategies that have proved most useful for different classes of protein–protein interactions.

735 citations


Journal ArticleDOI
TL;DR: Ivacaftor at doses of 50 mg and 75 mg seems to be safe in children aged 2-5 years with cystic fibrosis with a gating mutation followed up for 24 weeks, although the frequency of elevated LFTs suggests that monitoring should be frequent in young children, particularly those with a history of elevatedLFTs.

264 citations


Journal ArticleDOI
TL;DR: The pre-clinical and mechanistic rationale for assessing ARID1A defects as a biomarker of single-agent ATR inhibitor response and represents a novel synthetic lethal approach to targeting tumour cells are provided.
Abstract: Identifying genetic biomarkers of synthetic lethal drug sensitivity effects provides one approach to the development of targeted cancer therapies. Mutations in ARID1A represent one of the most common molecular alterations in human cancer, but therapeutic approaches that target these defects are not yet clinically available. We demonstrate that defects in ARID1A sensitize tumour cells to clinical inhibitors of the DNA damage checkpoint kinase, ATR, both in vitro and in vivo. Mechanistically, ARID1A deficiency results in topoisomerase 2A and cell cycle defects, which cause an increased reliance on ATR checkpoint activity. In ARID1A mutant tumour cells, inhibition of ATR triggers premature mitotic entry, genomic instability and apoptosis. The data presented here provide the pre-clinical and mechanistic rationale for assessing ARID1A defects as a biomarker of single-agent ATR inhibitor response and represents a novel synthetic lethal approach to targeting tumour cells.

238 citations


Journal ArticleDOI
TL;DR: The CTRad Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer are highlighted.
Abstract: In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.

222 citations


Journal ArticleDOI
15 Dec 2016-Nature
TL;DR: The present structure of CCR2 in a ternary complex with an orthosteric and allosteric (CCR2-RA-[R]) antagonist suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.
Abstract: CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer. These disease associations have motivated numerous preclinical studies and clinical trials (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2-chemokine axis. To aid drug discovery efforts, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein-protein interactions, receptor-chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

217 citations


Journal ArticleDOI
19 May 2016-Nature
TL;DR: The identity and function of a minimal set of components that is conserved in all contractile injection systems and show that the triggering mechanism is universally conserved are established.
Abstract: Several systems, including contractile tail bacteriophages, the type VI secretion system and R-type pyocins, use a multiprotein tubular apparatus to attach to and penetrate host cell membranes. This macromolecular machine resembles a stretched, coiled spring (or sheath) wound around a rigid tube with a spike-shaped protein at its tip. A baseplate structure, which is arguably the most complex part of this assembly, relays the contraction signal to the sheath. Here we present the atomic structure of the approximately 6-megadalton bacteriophage T4 baseplate in its pre- and post-host attachment states and explain the events that lead to sheath contraction in atomic detail. We establish the identity and function of a minimal set of components that is conserved in all contractile injection systems and show that the triggering mechanism is universally conserved.

203 citations


Journal ArticleDOI
TL;DR: Increases in body-mass index and reduction in number of pulmonary exacerbation events were observed in both lumacaftor/ivacaftors dose groups compared with placebo across all lung function subgroups.

124 citations


Journal ArticleDOI
TL;DR: This study exemplifies cancer-specific synthetic lethality between two proteins in the same pathway and raises the prospect of combining ATR and CHK1 inhibitors as promising cancer therapy.

118 citations


Journal ArticleDOI
TL;DR: To assess the efficacy and safety of decernotinib (VX‐509), an oral selective inhibitor of JAK‐3, in patients with rheumatoid arthritis (RA) in whom the response to methotrexate treatment was inadequate.
Abstract: Objective To assess the efficacy and safety of decernotinib (VX-509), an oral selective inhibitor of JAK-3, in patients with rheumatoid arthritis (RA) in whom the response to methotrexate treatment was inadequate. Methods In this 24-week, double-blind, randomized phase IIb study, 358 patients with active RA received either placebo (n = 71) or VX-509 at dosages of 100 mg/day (n = 71), 150 mg/day (n = 72), 200 mg/day (n = 72), or 100 mg twice daily (n = 72). Primary measures of efficacy at week 12 were the response rate according to the American College of Rheumatology 20% improvement criteria (ACR20) and change from baseline in the Disease Activity Score in 28 joints using the C-reactive protein level (DAS28-CRP). Results At week 12, the ACR20 response rates were 46.5%, 66.7%, 56.9%, and 68.1% in the groups receiving VX-509 at dosages of 100 mg/day, 150 mg/day, 200 mg/day, and 100 mg twice daily, respectively, and 18.3% in the placebo group (P < 0.001 for all comparisons). At week 12, the mean change from baseline in the DAS28-CRP was significantly greater in each VX-509 group compared with the placebo group (P < 0.001). Improvements were maintained at week 24, as shown by the ACR20, ACR50, and ACR70 response rates and mean change from baseline in the DAS28-CRP. The most common adverse event in the VX-509 group was headache (8.7%), and elevated levels of transaminases, lipoproteins, and creatinine were observed. Conclusion VX-509 significantly improved the signs and symptoms of RA at weeks 12 and 24 compared with the placebo group when it was administered in combination with methotrexate. Safety signals included infection and increases in liver transaminase and lipid levels.

110 citations


Journal ArticleDOI
TL;DR: Improved health was consistently observed in association with diagnosis via newborn screening compared with cohorts diagnosed later by symptomatic presentation, and earlier access to routine CF management is associated with improved subsequent health status.

Journal ArticleDOI
TL;DR: From the analysis of NHLBI Exome Sequencing Project (ESP) data, not only have a number of important disease and complex trait association findings emerged, but the collective experience offers some valuable lessons for WGS initiatives.
Abstract: Massively parallel whole-genome sequencing (WGS) data have ushered in a new era in human genetics. These data are now being used to understand the role of rare variants in complex traits and to advance the goals of precision medicine. The technological and computing advances that have enabled us to generate WGS data on thousands of individuals have also outpaced our ability to perform analyses in scientifically and statistically rigorous and thoughtful ways. The past several years have witnessed the application of whole-exome sequencing (WES) to complex traits and diseases. From our analysis of NHLBI Exome Sequencing Project (ESP) data, not only have a number of important disease and complex trait association findings emerged, but our collective experience offers some valuable lessons for WGS initiatives. These include caveats associated with generating automated pipelines for quality control and analysis of rare variants; the importance of studying minority populations; sample size requirements and efficient study designs for identifying rare-variant associations; and the significance of incidental findings in population-based genetic research. With the ESP as an example, we offer guidance and a framework on how to conduct a large-scale association study in the era of WGS.

Journal ArticleDOI
TL;DR: Nutritional status improved following treatment with ivacaftor for 48 weeks and significant CFQ-R improvements were seen in perception of eating, body image, and sense of ability to gain weight.
Abstract: The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gating mutation G551D prevents sufficient ion transport due to reduced channel-open probability. Ivacaftor, an oral CFTR potentiator, increases the channel-open probability. To further analyze improvements in weight and body mass index (BMI) in two studies of ivacaftor in patients aged ≥6 years with CF and the G551D mutation. Patients were randomized 1:1 to ivacaftor 150 mg or placebo every 12 h for 48 weeks. Primary end point (lung function) was reported previously. Other outcomes included weight and height measurements and CF Questionnaire-Revised (CFQ-R). Studies included 213 patients (aged ≤ 20 years, n = 105; aged > 20 years, n = 108). In patients ≤20 years, adjusted mean change from baseline to week 48 in body weight was 4.9 versus 2.2 kg (ivacaftor vs. placebo, p = 0.0008). At week 48, change from baseline in mean weight-for-age z-score was 0.29 versus −0.06 (p 20 years, adjusted mean change from baseline to week 48 in body weight was 2.7 versus −0.2 kg (p = 0.0003). Mean BMI change at week 48 was 0.9 versus −0.1 kg/m2 (p = 0.0003). There was no linear correlation evident between changes in body weight and improvements in lung function or sweat chloride. Significant CFQ-R improvements were seen in perception of eating, body image, and sense of ability to gain weight. Nutritional status improved following treatment with ivacaftor for 48 weeks.

Journal ArticleDOI
TL;DR: Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI to better predict DDI risk in humans.
Abstract: Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.

Journal ArticleDOI
08 Feb 2016-ACS Nano
TL;DR: It is suggested that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state.
Abstract: The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models. Using these pairs of mouse tumor models, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. This report shows that loss of these microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. We validated their downregulation in patients' tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Successful delivery of miRNAs is a challenge; hence, we synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target cancer. Reconstitution of these microRNAs using dPG-NH2 polyplexes into Saos-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells' migration. We further demonstrate that these microRNAs attenuate the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Treatment with each of these microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo. Taken together, these findings suggest that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state.

Journal ArticleDOI
TL;DR: In this review, the Innovation and Quality in Pharmaceutical Development's Clinical Pharmacology Leadership Group (CPLG) provides a compelling rationale for the use of itraconazole as a replacement for ketoconazole in clinical DDI studies and provides recommendations on the best practices for the Use of itRaconazoles in such studies.
Abstract: Ketoconazole has been widely used as a strong cytochrome P450 (CYP) 3A (CYP3A) inhibitor in drug-drug interaction (DDI) studies. However, the US Food and Drug Administration has recommended limiting the use of ketoconazole to cases in which no alternative therapies exist, and the European Medicines Agency has recommended the suspension of its marketing authorizations because of the potential for serious safety concerns. In this review, the Innovation and Quality in Pharmaceutical Development's Clinical Pharmacology Leadership Group (CPLG) provides a compelling rationale for the use of itraconazole as a replacement for ketoconazole in clinical DDI studies and provides recommendations on the best practices for the use of itraconazole in such studies. Various factors considered in the recommendations include the choice of itraconazole dosage form, administration in the fasted or fed state, the dose and duration of itraconazole administration, the timing of substrate and itraconazole coadministration, and measurement of itraconazole and metabolite plasma concentrations, among others. The CPLG's recommendations are based on careful review of available literature and internal industry experiences.

Journal ArticleDOI
07 Apr 2016-PLOS ONE
TL;DR: The findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model of demyelination in the cuprizone model.
Abstract: Cuprizone administration in mice provides a reproducible model of demyelination and spontaneous remyelination, and has been useful in understanding important aspects of human disease, including multiple sclerosis. In this study, we apply high spatial resolution quantitative MRI techniques to establish the spatio-temporal patterns of acute demyelination in C57BL/6 mice after 6 weeks of cuprizone administration, and subsequent remyelination after 6 weeks of post-cuprizone recovery. MRI measurements were complemented with Black Gold II stain for myelin and immunohistochemical stains for associated tissue changes. Gene expression was evaluated using the Allen Gene Expression Atlas. Twenty-five C57BL/6 male mice were split into control and cuprizone groups; MRI data were obtained at baseline, after 6 weeks of cuprizone, and 6 weeks post-cuprizone. High-resolution (100 μm isotropic) whole-brain coverage magnetization transfer ratio (MTR) parametric maps demonstrated concurrent caudal-to-rostral and medial-to-lateral gradients of MTR decrease within corpus callosum (CC) that correlated well with demyelination assessed histologically. Our results show that demyelination was not limited to the midsagittal line of the corpus callosum, and also that opposing gradients of demyelination occur in the lateral and medial CC. T2-weighted MRI gray/white matter contrast was strong at baseline, weak after 6 weeks of cuprizone treatment, and returned to a limited extent after recovery. MTR decreases during demyelination were observed throughout the brain, most clearly in callosal white matter. Myelin damage and repair appear to be influenced by proximity to oligodendrocyte progenitor cell populations and exhibit an inverse correlation with myelin basic protein gene expression. These findings suggest that susceptibility to injury and ability to repair vary across the brain, and whole-brain analysis is necessary to accurately characterize this model. Whole-brain parametric mapping across time is essential for gaining a real understanding of disease processes in-vivo. MTR increases in healthy mice throughout adolescence and adulthood were observed, illustrating the need for appropriate age-matched controls. Elucidating the unique and site-specific demyelination in the cuprizone model may offer new insights into in mechanisms of both damage and repair in human demyelinating diseases.

Journal ArticleDOI
TL;DR: This system can capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation.

Journal ArticleDOI
TL;DR: A multilayered paper-based platform is used to investigate the interactions between human lung tumor cells and fibroblasts that are isolated from primary patient tumor samples.
Abstract: A multilayered paper-based platform is used to investigate the interactions between human lung tumor cells and fibroblasts that are isolated from primary patient tumor samples.

Journal ArticleDOI
TL;DR: Key conclusions of meetings are summarized, including a path forward of actions for this group to aid the accelerated evaluation, application and development of free energy and related quantitative, structure-based design methods.
Abstract: In May and August, 2016, several pharmaceutical companies convened to discuss and compare experiences with Free Energy Perturbation (FEP). This unusual synchronization of interest was prompted by Schrodinger’s FEP+ implementation and offered the opportunity to share fresh studies with FEP and enable broader discussions on the topic. This article summarizes key conclusions of the meetings, including a path forward of actions for this group to aid the accelerated evaluation, application and development of free energy and related quantitative, structure-based design methods.

Journal ArticleDOI
TL;DR: Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervention.
Abstract: It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer’s disease, Parkinson’s disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervention.

Journal ArticleDOI
TL;DR: Experimental data suggests that the previously established NHC-mediated Pd(0)/Pd(II) catalytic manifold does not operate in this reaction, which provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.
Abstract: Pd(II)-catalyzed C(sp(3))-H arylation of saturated heterocycles with a wide range of aryl iodides is enabled by an N-heterocyclic carbene (NHC) ligand. A C(sp(3))-H insertion step by the Pd(II)/NHC complex in the absence of ArI is demonstrated experimentally for the first time. Experimental data suggests that the previously established NHC-mediated Pd(0)/Pd(II) catalytic manifold does not operate in this reaction. This transformation provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.

Journal ArticleDOI
TL;DR: In patients with severe lung disease, ivacaftor was well tolerated and was associated with improved lung function and weight gain.

Journal ArticleDOI
TL;DR: VX-509 plus aDMARD reduced the signs and symptoms of RA in patients with an inadequate response to a DMARD alone, and treatment was generally well tolerated.
Abstract: Objective To assess early effects on joint structures of VX-509 in combination with stable disease-modifying antirheumatic drug (DMARD) therapy using MRI in adults with rheumatoid arthritis (RA). Methods This phase II, placebo-controlled, double-blind, dose-ranging study randomised patients with RA and inadequate DMARD response to VX-509 100 mg (n=11), 200 mg (n=10) or 300 mg (n=10) or placebo (n=12) once daily for 12 weeks. Outcome measures included American College of Rheumatology score (ACR20; improvement of ≥20%) and disease activity score (DAS28) using C reactive protein (CRP), and the RA MRI scoring (RAMRIS) system. Results ACR20 response at week 12 was 63.6%, 60.0% and 60.0% in the VX-509 100-mg, 200-mg and 300-mg groups, respectively, compared with 25.0% in the placebo group. DAS28-CRP scores decreased in a dose-dependent manner with increasing VX-509 doses. Decreases in RAMRIS synovitis scores were significantly different from placebo for all VX-509 doses (p Conclusions VX-509 plus a DMARD reduced the signs and symptoms of RA in patients with an inadequate response to a DMARD alone. MRI responses were detected at week 12. Treatment was generally well tolerated. Trial registration number NCT01754935; results.

Journal ArticleDOI
TL;DR: The data presented here demonstrate that the HepatoPac cultures have the potential to be used in long-term culture to mimic complex clinical scenarios and directly measure a half-life for both CYP3A4 and CYP2B6 using the depletion kinetics of mRNA and functional activity.
Abstract: Long-term coculture models of hepatocytes are promising tools to study drug transport, clearance, and hepatoxicity. In this report we compare the basal expression of drug disposition genes and the inductive response of prototypical inducers (rifampin, phenobarbital, phenytoin) in hepatocyte two-dimensional monocultures and the long-term coculture model (HepatoPac). All the inducers used in the study increased the expression and activity of CYP3A4, CYP2B6 and CYP2C enzymes in the HepatoPac cultures. The coculture model showed a consistent and higher induction of CYP2C enzymes compared with the monocultures. The EC50 of rifampin for CYP3A4 and CYP2C9 was up to 10-fold lower in HepatoPac than the monocultures. The EC50 of rifampin calculated from the clinical drug interaction studies correlated well with the EC50 observed in the HepatoPac cultures. Owing to the long-term stability of the HepatoPac cultures, we were able to directly measure a half-life (t1/2) for both CYP3A4 and CYP2B6 using the depletion kinetics of mRNA and functional activity. The t1/2 for CYP3A4 mRNA was 26 hours and that for the functional protein was 49 hours. The t1/2 of CYP2B6 was 38 hours (mRNA) and 68 hours (activity), which is longer than CYP3A4 and shows the differential turnover of these two proteins. This is the first study to our knowledge to report the turnover rate of CYP2B6 in human hepatocytes. The data presented here demonstrate that the HepatoPac cultures have the potential to be used in long-term culture to mimic complex clinical scenarios.

Journal ArticleDOI
TL;DR: Two novel approaches to making confident and robust negative in silico predictions for mutagenicity (as defined by the Ames test) have been evaluated and showed that negative predictivity is high (∼90%) for the best approach and features that either reduce the accuracy or certainty of negative predictions are identified as misclassified or unclassified respectively.

Journal ArticleDOI
TL;DR: A method for the coupling of aryl bromides with potassium alkyl trifluoroborates, via nickel/photoredox dual catalysis, has been developed for use in continuous flow, able to form Csp3-Csp2 bonds with significantly reduced reaction times and a broader substrate scope than when conducted in batch.
Abstract: A method for the coupling of aryl bromides with potassium alkyl trifluoroborates, via nickel/photoredox dual catalysis, has been developed for use in continuous flow. This operationally simple protocol is able to form Csp3–Csp2 bonds with significantly reduced reaction times and a broader substrate scope than when conducted in batch. The utility of this method for rapid analog synthesis has been demonstrated by the synthesis of a small library of alkyl-substituted quinazolines.

Journal ArticleDOI
TL;DR: In a clinical study of patients with CF (≥12 years of age and a G551D-CFTR mutation), PEs, primarily those requiring hospitalization, were associated with low EQ-5D index and VAS scores.
Abstract: The analysis aimed to examine the impact of pulmonary exacerbations (PEs) and lung function on generic measures of HRQL in patients with cystic fibrosis (CF) using trial-based data. In a 48-week randomized, placebo-controlled study of ivacaftor in patients ≥12 years with CF and a G551D-CFTR mutation the relationship between PEs, PE-related hospitalizations and percent predicted forced expiratory volume in one second (ppFEV1) with EQ-5D measures (index and visual analog scale [VAS]) was examined in post-hoc analyses. Multivariate mixed-effects models were employed to describe the association of PEs, PE-related hospitalizations, and ppFEV1 on EQ-5D measures. One hundred sixty one patients (age: mean 25.5 [SD 9.5] years; baseline ppFEV1: 63.6 [16.4]) contributed 1,214 observations (ppFEV1: no lung dysfunction [n = 157], mild [n = 419], moderate [n = 572], severe [n = 66]). Problems were most frequently reported on pain/discomfort, anxiety/depression, and usual activities EQ-5D items. The mean (SE) EQ-5D index nominally decreased (worsened) with worsening severity of lung dysfunction (P = 0.070): 0.931 (0.023); mild: 0.923 (0.021); moderate: 0.904 (0.018); severe: 0.870 (0.020). 146 PEs were experienced by 72 patients, including 52 PEs (35.6 %) that required hospitalization. Mean EQ-5D index and VAS scores were lowest (worst) within 1 week (before or after PE start) for PEs requiring hospitalization. Pulmonary exacerbations, PE-related hospitalizations, and ppFEV1 were significant predictors of EQ-5D index and VAS. In a clinical study of patients with CF (≥12 years of age and a G551D-CFTR mutation), PEs, primarily those requiring hospitalization, were associated with low EQ-5D index and VAS scores. The impact of ppFEV1 was relatively smaller. Reducing PEs, in particular those requiring hospitalization, would likely improve HRQL among these patients. ClinicalTrials.gov, NCT00909532 ; URL: clinicaltrials.gov, May 26, 2009

Journal ArticleDOI
TL;DR: Assessment of the utility, perceived value, and impediments to the use of minipigs in preclinical safety testing indicate that minipig is an acceptable nonrodent species largely limited to studies using small molecules, primarily dermal products, and results are comparable to those reported 5 years ago.
Abstract: The use of minipigs in preclinical safety testing of pharmaceuticals is considered an alternative to the more traditional dog and nonhuman primate (NHP) nonrodent species. Substantial evidence exists to suggest that the anatomy, physiology, and biochemistry of minipigs are similar enough to humans to consider them as valid nonrodent models for pharmaceutical safety testing. Since the utilization of minipigs was last assessed over 5 years ago, the Preclinical Safety Leadership Group (DruSafe) of the International Consortium for Innovation and Quality in Pharmaceutical Development conducted this survey to provide an updated assessment of the utility, perceived value, and impediments to the use of minipigs in preclinical safety testing. Of the 32 participating members of DruSafe, 15 responded to the survey representing both large and small companies. Respondents indicated that the minipig has been utilized mostly for short-term safety assessment studies with dermal, oral, and parenteral routes of administration. Minipigs are widely accepted as appropriate models for cardiovascular assessments and have been used to a limited extent for reproductive toxicology testing. Overall responses indicated that safety testing for large molecules using this species is relatively low due to a lack of background data, reagents or biomarkers, concerns regarding immune system characterization and poor suitability for developmental toxicity assessments. Most companies utilized contract research organizations for definitive safety toxicity assessment studies. Conclusions of this survey indicate that minipig is an acceptable nonrodent species largely limited to studies using small molecules, primarily dermal products, and results are comparable to those reported 5 years ago.

Journal ArticleDOI
TL;DR: The role of aldehyde oxidase is highlighted in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.
Abstract: (R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide (VX-509, decernotinib) is an oral Janus kinase 3 inhibitor that has been studied in patients with rheumatoid arthritis. Patients with rheumatoid arthritis often receive multiple medications, such as statins and steroids, to manage the signs and symptoms of comorbidities, which increases the chances of drug-drug interactions (DDIs). Mechanism-based inhibition is a subset of time-dependent inhibition (TDI) and occurs when a molecule forms a reactive metabolite which irreversibly binds and inactivates drug-metabolizing enzymes, potentially increasing the systemic load to toxic concentrations. Traditionally, perpetrating compounds are screened using human liver microsomes (HLMs); however, this system may be inadequate when the precipitant is activated by a non-cytochrome P450 (P450)-mediated pathway. Even though studies assessing competitive inhibition and TDI using HLM suggested a low risk for CYP3A4-mediated DDI in the clinic, VX-509 increased the area under the curve of midazolam, atorvastatin, and methyl-prednisolone by approximately 12.0-, 2.7-, and 4.3-fold, respectively. Metabolite identification studies using human liver cytosol indicated that VX-509 is converted to an oxidative metabolite, which is the perpetrator of the DDIs observed in the clinic. As opposed to HLM, hepatocytes contain the full complement of drug-metabolizing enzymes and transporters and can be used to assess TDI arising from non-P450-mediated metabolic pathways. In the current study, we highlight the role of aldehyde oxidase in the formation of the hydroxyl-metabolite of VX-509, which is involved in clinically significant TDI-based DDIs and represents an additional example in which a system-dependent prediction of TDI would be evident.