scispace - formally typeset
Open AccessJournal ArticleDOI

High-Performance GaN Vertical Fin Power Transistors on Bulk GaN Substrates

Reads0
Chats0
TLDR
In this article, a GaN vertical fin power field effect transistor structure with submicron fin-shaped channels on bulk GaN substrates was reported, and a combined dry/wet etch was used to get smooth fin vertical sidewalls.
Abstract
This letter reports a GaN vertical fin power field-effect-transistor structure with submicron fin-shaped channels on bulk GaN substrates. In this vertical transistor design only n-GaN layers are needed, while no material regrowth or p-GaN layer is required. A combined dry/wet etch was used to get smooth fin vertical sidewalls. The fabricated transistor demonstrated a threshold voltage of 1 V and specific on resistance of 0.36 ${\mathrm {m}}\Omega {\mathrm {cm}}^{2}$ . By proper electric field engineering, 800 V blocking voltage was achieved at a gate bias of 0 V.

read more

Citations
More filters
Journal ArticleDOI

The 2018 GaN power electronics roadmap

Hiroshi Amano, +64 more
- 26 Mar 2018 - 
TL;DR: This collection of GaN technology developments is not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve.
Journal ArticleDOI

Synthesis and Applications of III-V Nanowires

TL;DR: The way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires is reviewed, and one of how the different families ofnanowires can contribute to applications is combined.
Journal ArticleDOI

Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs

TL;DR: In this paper, the authors present a review of the state-of-the-art GaN micro-and nanodevices beyond lighting, including an up-to-date overview on the state of the art.
Journal ArticleDOI

GaN-based power devices: Physics, reliability, and perspectives

TL;DR: In this article, the authors describe the physics, technology, and reliability of GaN-based power devices, starting from a discussion of the main properties of the material, the characteristics of lateral and vertical GaN transistors are discussed in detail to provide guidance in this complex and interesting field.
References
More filters
Journal ArticleDOI

GaN Power Transistors on Si Substrates for Switching Applications

TL;DR: In this article, GaN power transistors on Si substrates for power switching application are reported, and current collapse phenomena are discussed for GaN-HFETs on Si substrate, resulting in suppression of the current collapse due to using the conducting Si substrate.

GaN Power Transistors on Si Substrates for Switching Applications Hybrid MOS-FET transistor devices with low on-resistance, high hold-voltages and high breakdown voltage promise to provide high-power, low-loss operation for switching applications.

TL;DR: A hybrid metal-oxide-semiconductor HFET structure is a promising candidate for obtaining devices with a lower on-resistance and a high breakdown voltage as well as one of the cost-effective solutions.
Journal ArticleDOI

1200-V Normally Off GaN-on-Si Field-Effect Transistors With Low Dynamic on -Resistance

TL;DR: In this paper, high-voltage GaN field-effect transistors fabricated on Si substrates were reported to have high breakdown voltage of 1200 V and low dynamic on-resistance at highvoltage operation.
Journal ArticleDOI

GaN on Si Technologies for Power Switching Devices

TL;DR: In this article, a gate injection transistor (GIT) is proposed to increase the drain current with low on-state resistance by conductivity modulation, which greatly helps in increasing the efficiency of power switching systems.
Journal ArticleDOI

1.8 mΩ·cm2 vertical GaN-based trench metal–oxide–semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV-class operation

TL;DR: In this paper, a redesigned epitaxial layer structure with a regular hexagonal trench gate layout was proposed to reduce the specific on-resistance to as low as 1.8 mΩcm2 while obtaining a sufficient blocking voltage for 1.2kV-class operation.
Related Papers (5)

The 2018 GaN power electronics roadmap

Hiroshi Amano, +64 more
- 26 Mar 2018 -